ارزیابی ویژگی‌های مکانیکی ریشۀ نهال برخی گونه‌های درختی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی جنگل، گروه جنگلداری و اقتصاد جنگل، دانشکدة منابع طبیعی، دانشگاه تهران، کرج، ایران

2 دانشیار، گروه جنگلداری و اقتصاد جنگل، دانشکدة منابع طبیعی، دانشگاه تهران، کرج، ایران

3 پژوهشگر، گروه تعاملات اکولوژیک- اجتماعی در بوم‌سازگان‌های کشاورزی، دانشکدة علوم کشاورزی ارگانیک، دانشگاه کاسل، ویتسن‌هاوزن، آلمان

چکیده

رفتار مکانیکی ریشۀ پوشش گیاهی به‌طور چشمگیری سازوکار مسلح‌سازی خاک و پایداری دامنه را تحت تأثیر قرار می‌دهد. هدف این پژوهش، تعیین ویژگی‌های مکانیکی ریشۀ نهال برخی گونه‌های درختی در بخش نمخانۀ جنگل خیرود بود. برای اندازه‌گیری ویژگی‌های مکانیکی ریشه از سه گونۀ افراپلت (Acer velutinum Boiss.)، ممرز (Carpinus betulus L.) و راش (Fagus orientalis Lipsky.)، ده نمونه به‌طور کامل از خاک خارج شد. سپس تعداد کافی نمونۀ ریشه از هر گونه جمع‌آوری شد و آزمایش‌های مکانیکی روی آنها انجام گرفت. نتایج نشان داد که در هر سه گونه با افزایش قطر ریشه، نیروی کششی ریشه براساس رابطۀ توانی مثبت، و مقاومت کششی و مدول یانگ ریشه براساس رابطۀ توانی منفی تغییر می‌یابد. آنالیز کوواریانس نشان‌دهندۀ تفاوت نیروی کششی، مقاومت کششی و مدول یانگ ریشه در گونه‌های مختلف است. بر این اساس، میانگین نیروی کششی و مقاومت کششی برای گونۀ ممرز به‌ترتیب با 48 و 40 درصد بیشتر از گونۀ راش و افراپلت و میانگین مدول یانگ ریشۀ گونۀ راش با 38 درصد به‌طور معنی‌داری بیشتر از گونۀ ممرز و افراپلت بوده است. نتایج این پژوهش نشان می‌دهد که از ویژگی‌های مکانیکی ریشه می‌توان به‌عنوان عامل مهمی برای انتخاب نهال گونه‌های درختی در اهداف زیست‌مهندسی خاک استفاده کرد؛ بنابراین توصیه می‌شود این ویژگی‌ها در مدل‌های مسلح‌سازی خاک در نظر گرفته شوند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluating mechanical properties of seedling roots of some tree species

نویسندگان [English]

  • S. Keybondori 1
  • E. Abdi 2
  • Z. Shakeri 3
  • V. Etemad 2
1 Ph.D. student of Forest Engineering, Faculty of Natural Resources, University of Tehran, Karaj, I.R. Iran
2 Associate Prof., Dept. of Forestry, Faculty of Natural Resources, University of Tehran, Karaj, I. R. Iran
3 Researcher, Section of Social-Ecological Interactions in Agricultural Systems, Faculty of OrganicAgricultural Sciences, University of Kassel, Witzenhausen, Germany
چکیده [English]

The mechanical behavior of vegetation roots significantly affects the mechanism of soil reinforcement and slope stability. The aim of the present study was to determine the mechanical properties of seedling roots of some tree species in the second district of Kheyrud forest. Ten samples of each species (beech (Fagus orientalis Lipsky.), hornbeam (Carpinus betulus L.) and, maple (Acer velutinum Boiss.)) completely extracted from soil and all roots were collected, then their mechanical properties were measured in the labratory. The results showed that in all species, the relation between root diameter and tensile force, was positive power law whereas the relation was negative power law for root diameter and tensile strength and also Young’s modulus. Results of ANCOVA showed that tensile force, tensile strength, and Young’s modulus were significantly different among species. Accordingly, the average tensile force and tensile strength for hornbeam species were 48 and 40% higher than beech and maple species, respectively and the average Young's modulus of beech species was 38% higher than hornbeam and maple species. The findings of this work show that the mechanical properties of the roots can be used as an indicator in selecting species for soil bioengineering purposes. Therefore, it is recommended that these properties be considered in soil reinforcement modeling.

کلیدواژه‌ها [English]

  • Soil protection
  • Tree species seedling
  • Young’s modulus of roots
  • Root mechanics
 
Abdi, E. (2018). Root tensile force and resistance of several tree and shrub species of Hyrcanian forest, Iran. Croatian Journal of Forest Engineering. Journal for Theory and Application of Forestry Engineering, 39(2), 255-270.
Abdi, E., Azhdary, F., Abdulkhani, A., & Sofy Mariv, H. (2014). Tensile strength and cellulose content of Persian ironwood (Parrotia persica) roots as bioengineering material. Journal of Forest Science, 60(1), 425-430.
Abdi, E., & Deljouei, A. (2019). Seasonal and spatial variability of root reinforcement in three pioneer species of the Hyrcanian forest. Austrian Journal of Forest Science, 136(3), 175-198.
Abdi, E., Majnounian, B., Genet, M., & Rahimi, H. (2010). Quantifying the effects of root
reinforcement of Persian Ironwood (Parrotia persica) on slope stability; a case study: Hillslope of
Hyrcanian forests northern Iran. Ecological Engineering, 36(10), 1409-1416.
Abdi, E., Majnounian, B., Rahimi, H., & Zobeiri, M. (2009). Distribution and tensile strength of
Hornbeam (Carpinus betulus) roots growing on slopes of Caspian Forests, Iran. Journal of Forestry
Research, 20
(2), 105-110.
Abdi, E., Saleh, H. R., Majnonian, B., & Deljouei, A. (2019). Soil fixation and erosion control by Haloxylon persicum roots in arid lands, Iran. Journal of Arid Land, 11(1), 86-96.
Afshar, S.A., Etemad, V., Abdi, E., Attarod, P., & Deljouei, A. (2020). Effect of slope on characteristics of Quercus castaneifolia root system.‌ Journal of Forest Research and Development, 6(2), 313-327.
Boldrin, D., Bengough, A.G., Lin, Z., & Loades, K.W. (2021). Root age influences failure location in grass species during mechanical testing. Plant and Soil, 461(1), 457-469.‌
Boldrin, D., Leung, A.K., & Bengough, A.G. (2017). Root biomechanical properties during establishment of woody perennials. Ecological Engineering, 109, 196-206.
Cislaghi, A. (2021). Exploring the variability in elastic properties of roots in Alpine tree species. Journal of Forest Science, 67(7), 338-356.‌
Deljouei, A., Abdi, E., Majnounian, B., & Schwarz, M. (2018). Comparing roots mechanical characteristics of hornbeam trees in different diameter at breast height classes. Forest and
Wood Products, 71
(3), 199-207.
Deljouei, A., Abdi, E., Schwarz, M., Majnounian, B., Sohrabi, H., & Dumroese, R.K. (2020). Mechanical characteristics of the fine roots of two broadleaved tree species from the Temperate Caspian Hyrcanian Ecoregion. Forests, 11(3), 345.‌
Eab, K.H., Likitlersuang, S., & Takahashi, A. (2015). Laboratory and modelling investigation of root-reinforced system for slope stabilisation. Soils and Foundations, 55(5), 1270-1281.
Gobinath, R., Ganapathy, G.P., & Akinwumi, I.I. (2021). Stabilisation of natural slopes using natural plant root as reinforcing agent, Materials. Today: Proceedings, 39, 493-499.‌
Hairiah, K., Widianto, W., Suprayogo, D., & Van Noordwijk, M. (2020). Tree roots anchoring and binding soil: reducing landslide risk in Indonesian agroforestry. Land, 9(8), 256.‌
Hathaway, R.L., & Penny, D. (1975). Root strength in some Populus and Salix clones. New Zealand Journal of Botany, 13(3), 333-344.‌
Hollis, L.O., & Turner, R.E. (2019). The tensile root strength of Spartina patens: Response to atrazine exposure and nutrient addition. Wetlands, 39(4), 759-775.
Kazemi, M., Abdi, E., Majnounian, B., & Yousefzadeh, H. (2014). The effect of season on resistance of Persian oak (Quercus persica) roots (Case study: Tabarok, Bazaft basin). Iranian Journal of Forest, 6(4), 435- 444.
Keybondori, S., Majnounian, B., Abdi, E., Yousefzadeh, H., & Deljouei, A. (2018). Assessing spatial
changes of roots tensile strength of Salix purpurea L. in riparian zone of Karun (Case study: Susan
plain in Khuzestan province). Iranian Journal of Forest and Poplar Research, 26(1), 70-80.
Lee, J.T., Tsai, S.M., Wu, Y.J., Lin, Y.S., Chu, M.Y., & Lee, M.J. (2021). Root Characteristics and Water Erosion-Reducing Ability of Alpine Silver Grass and Yushan Cane for Alpine Grassland Soil Conservation. Sustainability, 13(14), 7633.‌
Li, C., Jia, Z., Yuan, Y., Cheng, X., Shi, J., Tang, X., ... & Zhang, J. (2020). Effects of mineral-solubilizing microbial strains on the mechanical responses of roots and root-reinforced soil in external-soil spray seeding substrate. Science of The Total Environment, 723, 138079.
Liang, T., Bengough, A.G., Knappett, J.A., MuirWood, D., Loades, K.W., Hallett, P.D., ... & Meijer, G.J. (2017). Scaling of the reinforcement of soil slopes by living plants in a geotechnical centrifuge. Ecological Engineering, 109, 207-227.
Loades, K.W., Bengough, A.G., Bransby, M.F., & Hallett, P.D. (2013). Biomechanics of nodal, seminal and lateral roots of barley: effects of diameter, waterlogging and mechanical impedance. Plant and Soil, 370(1), 407-418.‌
Loades, K.W., Bengough, A.G., Bransby, M.F., & Hallett, P.D. (2015). Effect of root age on the biomechanics of seminal and nodal roots of barley (Hordeum vulgare L.) in contrasting soil environments. Plant and Soil, 395(1), 253-261.‌
Naghdi, R., Maleki, S., Abdi, E., Mousavi, R., & Nikooy, M. (2013). Assessing the effect of Alnus roots on hillslope stability in order to use in soil bioengineering. Journal of forest science, 59(11), 417-423.‌
Navarro Hevia, J., Lima Farias, T.R., de Araújo, J.C., Osorio Peláez, C., & Pando, V. (2016). Soil erosion in steep road cut slopes in Palencia (Spain). Land degradation & development, 27(2), 190-199.
Maffra, C.R.B., & Sutili, F.J. (2020). The use of soil bioengineering to overcome erosion problems in a pipeline river crossing in South America. Innovative Infrastructure Solutions, 5(1), 1-8.
Maleki, S., Naghdi, R., Abdi, E., & Nikooy, M. (2014). Investigating the amount of reinforcement of Alnus subcordata root in order to use in bioengineering. Iranian Journal of Forest, 6(1), 49-58.‌
Mao, Z., Saint-Andre, L., Genet, M., Mine, F. X., Jourdan, C., Rey, H., & Stokes, A. (2012). Engineering ecological protection against landslides in diverse mountain forests: choosing cohesion models. Ecological Engineering, 45, 55-69.
Mao, Z., Wang, Y., McCormack, M.L., Rowe, N., Deng, X., Yang, X., & Stokes, A. (2018). Mechanical traits of fine roots as a function of topology and anatomy. Annals of botany, 122(7), 1103-1116.‌
Melese, D.T. (2021). Effect of Diameter, Root Moisture Content, Gauge Length and Loading Rate on Tensile Strength of Plant Roots and Their Contribution to Slope Stability. Lowland Technology International, 22(4), 164-173.
Mohammadrad, A., Abdi, E., PourHashemi, M., Majnounian, B., & Deljouei, A. (2020). Effect of oakdecline phenomenon on root mechanical characteristics of Brants oak (Quercus brantii Lindl.). Iranian Journal of Forest, 12(2), 221-236.
Moresi, F.V., Maesano, M., Matteucci, G., Romagnoli, M., Sidle, R.C., & Scarascia Mugnozza, G. (2019). Root biomechanical traits in a montane Mediterranean forest watershed: variations with species diversity and soil depth. Forests, 10(4), 341.‌
Schwarz, M., Lehmann, P., & Or, D. (2010). Quantifying lateral root reinforcement in steep slopes–from a bundle of roots to tree stands. Earth Surface Processes and Landforms. The Journal of the British Geomorphological Research Group, 35(3), 354-367.‌
Vergani, C., Schwarz, M., Soldati, M., Corda, A., Giadrossich, F., Chiaradia, E.A., & Bassanelli, C. (2016). Root reinforcement dynamics in subalpine spruce forests following timber harvest: a case study in Canton Schwyz, Switzerland. Catena, 143, 275-288.
Wang, X., Hong, M.M., Huang, Z., Zhao, Y.F., Ou, Y.S., Jia, H.X., & Li, J. (2019). Biomechanical properties of plant root systems and their ability to stabilize slopes in geohazard-prone regions. Soil and Tillage Research, 189, 148-157.‌
Ye, C., Guo, Z., Li, Z., & Cai, C. (2017). The effect of Bahiagrass roots on soil erosion resistance of Aquults in subtropical China. Geomorphology, 285, 82-93.
Zhang, L., Yan, W.M., & Leung, F.T. (2021). Probabilistic estimation of root cohesion in regards to intra-specific variability of root system. Catena, 196, 104-898.