تاثیر گرادیان دما و بارش بر رویش عرضی و ویژگی‌های آوندی چوب زبان‌گنجشک (Fraxinus excelsior L.) در جنگل‌های هیرکانی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه علوم و صنایع چوب و کاغذ، دانشکدة منابع طبیعی، دانشگاه تهران، کرج

2 استاد گروه علوم و صنایع چوب و کاغذ، دانشکدة منابع طبیعی، دانشگاه تهران، کرج

3 دانش‌آموختۀ کارشناسی ارشد، گروه علوم و صنایع چوب و کاغذ، دانشکدة منابع طبیعی، دانشگاه تهران، کرج

چکیده

ویژگی‌های آوندی، کارامدی سامانۀ هیدرولیک درختان پهن‌برگ را تعیین می‌کنند. در این پژوهش برای بررسی تأثیر ارتفاع از سطح دریا و طول جغرافیایی (گرادیان دمایی و رطوبتی) بر رویش عرضی و ویژگی‌های آوندی بافت چوبی زبان‌گنجشک (Fraxinus excelsior)، از درختان واقع در دو رویشگاه 300 و 1300 متری در جنگل‌های دالخانی رامسر و یک رویشگاه ساری (ارتفاع 1260 متری) نمونه‌برداری شد. پهنای حلقۀ ‌رویش (TRW) و چوب‌آغاز و چوب‌پایان، میانگین اندازه (AVLA) و تعداد آوندهای چوب‌آغاز (VF)، تخلخل، هدایت هیدرولیکی ویژۀ نسبی (RSC) و طول الیاف در ده حلقۀ رویشی آخر در این درختان اندازه‌گیری و مقایسه شدند. براساس نتایج، تغییرات اندازۀ آوندها مستقل از دیگر ویژگی‌ها و متأثر از مؤلفۀ متفاوتی بود. در مقایسۀ رویشگاه مرتفع و پستِ رامسر، TRW در ارتفاع پایین بیشتر ولی RSC، VF و تخلخل در این رویشگاه کمتر بود. برخلاف انتظار، با کاهش ارتفاع (افزایش دما)، اندازۀ آوندها کوچک‌تر شد که این مسئله را می‌توان به اثر معکوس دمای بیشتر از حد آستانه بر فیزیولوژی درخت نسبت داد. علی‌رغم اختلاف در AVLA و VF در دو رویشگاهِ مرتفع رامسر و ساری، نحوۀ ترکیبِ این دو در درختان این دو رویشگاه به‌گونه‌ای بود که تخلخل، RSC و TRW رویشگاه‌ها شبیه یکدیگر شد. به‌طور کلی می‌توان نتیجه گرفت که در منطقۀ غربی و مرکزی هیرکانی، اثر ارتفاع از سطح دریا - که به‌شکل کاهش دما خود را نشان می‌دهد- بر رشد عرضی و سامانۀ آوندی درختان زبان‌گنجشک بیش از گرادیان رطوبتی (طول جغرافیایی) است.

کلیدواژه‌ها


عنوان مقاله [English]

The effects of temperature and precipitation gradient on radial growth and vascular characteristics of Fraxinus excelsior L. in Hyrcanian forests

نویسندگان [English]

  • R. Oladi 1
  • K. Pourtahmasi 2
  • Z. Lamtarali 3
1 Associate Prof., Dept. of Wood Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
2 Prof., Dept. of Wood Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
3 MSc Graduate of Wood Biology and Anatomy, Department of Wood Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
چکیده [English]

 
Vascular characteristics of the xylem determine the efficiency of the hydraulic system in broadleaved trees. To investigate the effects of elevation and longitude (temperature and precipitation gradient) on radial growth and vascular properties of common ash (Fraxinus excelsior) xylem, samples were taken from trees located in two wet sites in Ramsar (300 and 1300 m.a.s.l) and a semi-dry site in Sari (1260 m.a.s.l) of Hyrcanian forests. Tree-ring width (TRW), as well as early- and latewood width, average size (AVLA) and the number of vessels per area (VF), tree-ring porosity, relative specific hydraulic conductivity (RSC), and fiber length were measured and compared in the last ten growth rings of selected trees. According to the results, variations in vessel size were independent of other features and were affected by a different component. Compared with the highland of Ramsar, trees at low altitudes had wider annual rings while having lower RSC, VF, and porosity. Surprisingly, with a decrease in altitude (increasing temperature), the size of vessels shrank, which can be attributed to the inverse effect of over-threshold temperature on tree physiology. Despite the differences in AVLA and VF in the two highland sites of Ramsar and Sari, the combination of two features was in a way that the porosity, RSC, and TRW of trees in the two sites became comparable. In general, it can be concluded that in the western and central Hyrcanian forests, the effect of altitude – manifested in a decrease in temperature - on the radial growth and vascular system of ash trees is more pronounced than the effect of precipitation gradient (longitude).

کلیدواژه‌ها [English]

  • Elevational gradient
  • wood anatomy
  • tree physiology
  • xylem conducting tissue
  • ash
Aguilar-Rodríguez, S., Terrazas, T., & López-Mata, L. (2006). Anatomical wood variation of Buddleja cordata (Buddlejaceae) along its natural range in Mexico. Trees, 20(2), 253.
Bayramzadeh, V., Funada, R., & Kubo, T. (2008). Relationships between vessel element anatomy and physiological as well as morphological traits of leaves in Fagus crenata seedlings originating from different provenances. Trees, 22(2), 217-224.
Bayramzadeh, V., & Safdari, V.R. (2019). Application of ImageJ software in agricultural sciences and natural resources. Tehran, Iranian Student Book Agency Publication.
Castagneri, D., Regev, L., Boaretto, E., & Carrer, M. (2017). Xylem anatomical traits reveal different strategies of two Mediterranean oaks to cope with drought and warming. Environmental and Experimental Botany, 133, 128-138.
Erşen Bak, F., & Merev, N. (2016). Ecological wood anatomy of Fraxinus L. in Turkey (Oleaceae): Intraspecific and interspecific variation. Turkish Journal of Botany, 40, 356-372.
Fonti, P., & García‐González, I. (2008). Earlywood vessel size of oak as a potential proxy for spring precipitation in mesic sites. Journal of Biogeography, 35(12), 2249-2257.
Fonti, P., Treydte, K., Osenstetter, S., Frank, D., & Esper J. (2009). Frequency-dependent signals in multi-centennial oak vessel data. Palaeogeography, Palaeoclimatology, Palaeoecology, 275, 92–99.
Fonti, P., von Arx, G., García‐González, I., Eilmann, B., Sass‐Klaassen, U., Gärtner, H., & Eckstein, D. (2010). Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytologist, 185(1), 42-53.
Franklin, G.L. (1945). Preparation of thin sections of synthetic resins and wood-resin composites, and a new macerating method for wood. Nature, 155(3924), 51-51.
García-Cervigón, A.I., Fajardo, A., Caetano-Sánchez, C., Camarero, J.J., & Olano, J.M. (2020). Xylem anatomy needs to change, so that conductivity can stay the same: xylem adjustments across elevation and latitude in Nothofagus pumilio. Annals of botany, 120.
5(7), 1101-1112.
Gea-Izquierdo, G., Fonti, P., Cherubini, P., Martín-Benito, D., Chaar, H., & Cañellas, I. (2012). Xylem hydraulic adjustment and growth response of Quercus canariensis Willd. to climatic variability. Tree Physiology, 32(4), 401-413.
Gea-Izquierdo, G., Battipaglia, G., Gärtner, H., & Cherubini, P. (2013). Xylem adjustment in Erica arborea to temperature and moisture availability in contrasting climates. IAWA Journal, 34(2), 109-126.
Islam, M., Rahman, M., & Bräuning, A. (2019). Long-term wood anatomical time series of two ecologically contrasting tropical tree species reveal differential hydraulic adjustment to climatic stress. Agricultural and Forest Meteorology, 265, 412-423.
Martínez-Sancho, E., Dorado-Liñán, I., Heinrich, I., Helle, G., & Menzel, A. (2017). Xylem adjustment of sessile oak at its southern distribution limits. Tree physiology, 37(7), 903-914.
Matisons, R., Jansons, J., Katrevičs, J., & Jansons, Ā. (2015). Relation of tree-ring width and earlywood vessel size of alien Quercus rubra L. with climatic factors in Latvia. Silva Fennica, 49(4), 1-14.
Moradi, H., Naqinezhad, A., Siadati, S., Yousefi, Y., Attar, F., Etemad, V., & Reif, A. (2016). Elevational gradient and vegetation‐environmental relationships in the central Hyrcanian forests of northern Iran. Nordic Journal of Botany, 34(1), 1-14.
Najafi Harsini, F., Oladi, R., & Pourtahmasi, K. (2018). The mutual relationship between earlywood vessel features of persian oak (Quercus brantii Lindl.) and tree mortality. Iranian Journal of Forest, 10(2), 167-179.
Nazari, N., Bahmani, M., Kahyani, S., Humar, M., & Koch, G. (2020). Geographic variations of the wood density and fiber dimensions of the Persian oak wood. Forests, 11(9), 1003.
Nola, P., Bracco, F., Assini, S., von Arx, G., & Castagneri, D. (2020). Xylem anatomy of Robinia pseudoacacia L. and Quercus robur L. is differently affected by climate in a temperate alluvial forest. Annals of Forest Science, 77(1), 1-16.
Oladi, R. (2014). Application of “ImageJ” for measuring vessel features of wood. Proceedings of the second national conference on new technologies in the wood and paper industries, 1-8.
Oladi, R., Pourtahmasi, K., Eckstein, D., & Bräuning, A. (2011). Seasonal dynamics of wood formation in Oriental beech (Fagus orientalis Lipsky) along an altitudinal gradient in the Hyrcanian forest, Iran. Trees, 25(3), 425-433.
Oladi, R., Bräuning, A., & Pourtahmasi, K. (2014). “Plastic” and “static” behavior of vessel-anatomical features in Oriental beech (Fagus orientalis Lipsky) in view of xylem hydraulic conductivity. Trees, 28(2), 493-502.
Oladi, R., Nasiriani, S., Danekar, A., & Pourtahmasi, K. (2016). Inter-relations between tree-ring width and vessel features in black alder (Alnus glutinosa). Iranian Journal of Wood and Paper Science, 30(2), 278-288.
Oladi, R., Elzami, E., Pourtahmasi, K., & Bräuning, A. (2017). Weather factors controlling growth of Oriental beech are on the turn over the growing season. European Journal of Forest Research, 136(2), 345-356.
Pourbabaei, H., Salehi, A., Sadat Ebrahimi, S., & Khodaparast, F. (2021). The effects of altitude and the most important soil components on vegetation characteristics, Asalem watershed. Iranian Journal of Forest, 13(3), 285-304.
Pourtahmasi, K., Lotfiomran, N., Bräuning, A., & Parsapajouh, D. (2011). Tree-ring width and vessel characteristics of oriental beech (Fagus orientalis) along an altitudinal gradient in the Caspian forests, northern Iran. IAWA Journal, 32(4), 461-473.
Sagheb-Talebi, K., Pourhashemi, M., & Sajedi, T. (2014). Forests of Iran: a treasure from the past, a hope for the future. New York, London: Springer.
Schrader, J., Baba, K., May, S.T., Palme, K., Bennett, M., Bhalerao, R.P., & Sandberg, G. (2003). Polar auxin transport in the wood-forming tissues of hybrid aspen is under simultaneous control of developmental and environmental signals. Proceedings of the National Academy of Sciences, 100(17), 10096-10101.
Soleymanpour, M., Tabari Kouchaksaraei, M., & Kian, S. (2021). Germination, growth and seedling quality index of common ash in immature and mature seed. Iranian Journal of Forest, 13(1), 1-13.
Tyree, M.T., & Zimmermann, M.H. (2002). Xylem structure and the ascent of sap. Berlin, Germany: Springer.
Way, D.A., & Oren, R. (2010). Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree physiology, 30(6), 669-688.
Yilmaz, M., Serdar, B., Altun, L., & Usta, A. (2008). Relationships between environmental variables and wood anatomy of Quercus pontica C. Koch (Fagaceae). Fresenius Environmental Bulletin, 17(7), 902-910.
Zhu, L., Liu, S., Arzac, A., Cooper, D.J., Jin, Y., Yuan, D., & Wang, X. (2021). Different response of earlywood vessel features of Fraxinus mandshurica to rapid warming in warm-dry and cold-wet areas. Agricultural and Forest Meteorology, 307, 108523.
Zimmermann, J., Link, R.M., Hauck, M., Leuschner, C., & Schuldt, B. (2021). 60-year record of stem xylem anatomy and related hydraulic modification under increased summer drought in ring-and diffuse-porous temperate broad-leaved tree species. Trees, 35(3), 919-937.