پوست درختان به‌عنوان پایشگر زیستی فلزات سنگین (مطالعۀ موردی: باغ‌های حاشیۀ جادۀ روستای حیدره بالاشهر همدان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه محیط زیست، دانشکده منابع طبیعی و محیط‌زیست، دانشگاه ملایر، ملایر، ایران

2 دانشجوی دکتری آلودگی محیط زیست ، دانشکده منابع طبیعی و محیط‌زیست، دانشگاه ملایر، ملایر، ایران

3 کارشناسی محیط زیست، دانشکده منابع طبیعی و محیط زیست، دانشگاه ملایر

10.22034/ijf.2022.303169.1803

چکیده

تحقیق دربارۀ فلزات سنگین در گیاهان با دو هدف بررسی امنیت غذایی و کاربرد در پایش زیستی و حذف فلزات سنگین از محیط زیست انجام می‌گیرد. پژوهش حاضر با هدف بررسی غلظت فلزات سنگین مس، روی و سرب در پوست درختان صنوبر و گردو و خاک اطراف آنها در حاشیۀ جادۀ روستای حیدره بالاشهر همدان انجام گرفت. در مجموع 40 نمونه خاک سطحی و پوست درخت از منطقۀ مذکور برداشت شد. نمونه‌ها پس از آماده‌سازی اولیه، با استفاده از هضم‌ تر برای آنالیز فلزات سنگین آماده شدند و با استفاده از دستگاه جذب اتمی، غلظت فلزات سنگین تعیین شد. به‌منظور تحلیل داده‌ها از روش‌های آماری، محاسبۀ شاخص‌های آلودگی و نسبت شاخص‌ها استفاده شد. براساس نتایج، خاک منطقه از نظر فلزات سنگینِ تحت بررسی بنابر شاخص‌های CD (درجۀ آلودگی)، mCD (آلودگی اصلاح‌شده)، PER (ریسک اکولوژی بالقوه)، ∑TU (پتانسیل سمیت) و IPI (آلودگی تجمعی) در طبقۀ آلودگی کم و براساس شاخص PLI (شاخص بار آلودگی) و PINemerow (شاخص نمرو) به‌ترتیب در طبقۀ آلودگی متوسط و منطقۀ احتیاط قرار دارد. بیشترین سهم پتانسیل سمیت فلزات سنگین با 8/43 و 05/38 درصد به‌ترتیب در خاک اطراف گردو و صنوبر مربوط به مس بود. سرب به‌ترتیب با 3/52 و 08/58 درصد بیشترین ریسک محیط زیستی بالقوه را برای خاک اطراف گردو و صنوبر داشت. تنها بین غلظت روی در پوست دو گونۀ درختی اختلاف آماری معنی‌دار وجود داشت (p<0.05). همچنین بین غلظت سرب در صنوبر با غلظت آن در خاک همبستگی مثبت و معنی‌داری وجود داشت (p<0.05) که نشان می‌دهد با افزایش غلظت سرب در خاک غلظت آن در گیاه افزایش می‌یابد و صنوبر گونۀ مناسب‌تری به‌عنوان پایشگر و تجمع‌دهندۀ سرب محسوب می‌شود. با وجود آلاینده‌های ناشی از ترافیک جاده‌ای، امنیت غذایی محصولات کشاورزی منطقه باید در پایش‌های مکانی و زمانی به‌ویژه در مورد سرب و مس بررسی شود.

کلیدواژه‌ها


عنوان مقاله [English]

Tree Bark as a Biomonitor of Heavy Metal Pollution (Case study: Roadside Gardens of Heidareh Balashahr Village in Hamadan)

نویسندگان [English]

  • Eisa Solgi 1
  • Fouzieh Beigmohammadi 2
  • Zahra Taheri 3
  • Fariba Aghaei 3
1 Associate Professor, Department of Environment, Faculty of Natural Resources and Environment, Malayer University, Malayer, Iran
2 Ph.D student &lrm;of Environmental Pollution, Faculty of Natural Resources and Environment, Malayer University, Malayer, Hamedan, Iran
3 BSc of Environment, Faculty of Natural Resources and Environment, Malayer University
چکیده [English]

The study of heavy metals in plants is done with two objectives of studying food safety and application in biological monitoring and elimination of heavy metals from the environment. The aim of this study was to investigate the concentration of heavy metals zinc, copper and lead in the bark of poplar and walnut trees and surrounding soil samples from road of Heidareh Balashahr village in Hamadan. A total of 40 topsoils and tree barks samples were collected from this area. After initial preparation, the samples were prepared using wet digestion method to analyze the heavy metals and the concentration of heavy metals were determined by using an atomic absorption spectrometer (ASS). In order to data analysis, statistical methods, pollution indices and ratio of indices were used. According to the results the Degree of Contamination (CD), Modified Degree of Contamination (mCD), Potential Ecological Risk (PER), Potential acute Toxicity (∑TU) and Integrated Pollution Index (IPI) indices showed low pollution and Pollution Load Index (PLI) and PINemerow indices showed moderate pollution and precautionary zone, respectively. The highest contribution to potential toxicity was 43.8 and 38.05 percent in the soil around walnut and poplar was related to copper. Also, the highest potential environmental risk was related to lead with 52.3 and 58.08 percent, respectively for the surrounding soil of walnut and poplar. Based on these results, there was only a statistically significant difference between zinc concentrations in the two species (p <0.05). Also, significant positive correlations were observed between the Pb contents in soils and those of poplar bark (p<0.05) that indicated Pb in plant increased with increasing Pb in soil and, so poplar is a more suitable species as a biomonitor and lead accumulator. Despite the contaminants caused by road traffic, food safety of the region's agricultural products should be checked in spatial and temporal monitoring, especially for lead and copper.

کلیدواژه‌ها [English]

  • Heavy metals
  • Biomonitoring
  • Pollution indices
  • Walnut
  • Poplar
 
Abrahim, GM., & Parker, R.J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136(1), 227-38.
Ahmadi Mehrz, M., & Rahmani, M. (2018). Investigation of tourism capacities of Heidareh village above Hamadan city, 2nd International Conference on Tourism, Geography and Clean Environment, Hamadan. 1-14. 
Alizadeh,  S.M., Zahedi Amiri, G.h., Shirmardi, M., & Shahriari, M.H.  (2015). Effect of heavy metals (lead, cadmium and chromium) on some root morphological characteristics of Populus alba L. and Populus nigra L. seedlings. Iranian Journal of Forest, 6(3), 267-277.
Angulo, E. (1996). The Tomlinson's pollution load index applied to heavy metal “Mussel-Watch” data: a useful index to assess coastal pollution. Science of the Total Environment, 187, 19-56.
Barbes, L., Barbulescu, A., Radulescu, C., Stihi, C., & Chelarescu, E.D. (2014). Determination of heavy metals in leaves and bark of Populus nigra L. by atomic absorption spectrometry. Romanian Reports in Physics, 66(3), 877-86.
Behravesh, F., Mahmudy Gharaie, M., Ghassemzadeh, F., & Avaz Moghaddam, S. (2015). Determination of Heavy Metals Pollution in Traffic dust of Mashhad City, and its Origin by Using “Selective Sequential Extraction” (SSE) Procedure. Journal of Geoscience, 24(95), 141-150. 
Dadar, M., Adel, M., Saravi, H.N., & Dadar, M.A. (2016). Comparative study of trace metals in male and female Caspian kutum (Rutilus frisii kutum) from the southern basin of Caspian Sea. Environ. Environmental Science and Pollution Research, 23(24), 24540-24546.
Dastgoshadeh, F., Tooni, O., Moghadam Sheikhjan, S., Taghinejad, G., Hemmatian, N., & Hatami, R. (2014). Contamination Assessment of Heavy Metals in Dust of Selected Roads in Karaj, Iran. Journal of Environmental Studies, 40(2), 331-344.
Dinu, C., Vasile, G.G., Buleandra, M., Popa, D.E., Gheorghe, S., & Ungureanu, E.M., (2020). Translocation and accumulation of heavy metals in Ocimum basilicum L. plants grown in a mining-contaminated soil. Journal of Soils and Sediments, 20(4), 2141-2154.
Gurumoorthi, K., & Venkatachalapathy, R. (2016). Spatial and seasonal trend of trace metals and ecological risk assessment along Kanyakumari coastal sediments, southern India. Pollution. 2, 269-287.
Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8), 975-1001.
He, J., Yang, Y., Christakos, G., Liu, Y., & Yang, X. (2019). Assessment of soil heavy metal pollution using stochastic site indicators. Geoderma, 337,359-367.
Hou, Y.X., Zhao, H.F., Zhang, Z., & Wu, K.N. (2018). A novel method for predicting cadmium concentration in rice grain using genetic algorithm and back-propagation neural network based on soil properties. Environmental Science and Pollution Research, 25(35), 35682-35692.
Khosropour, E., Attarod, P., Shirvany, A., Bayramzadeh, V., Moeinaddini, M., Hakimi, L. (2018). Morphological and physiological properties of Patanus orientalis and Pinus eldarica leaves to urban pollution in Tehran, Iranian Journal of Forest, 10(2), 123-137.
Kousehlar, M., & Widom, E. (2019). Sources of metals in atmospheric particulate matter in Tehran, Iran: Tree bark biomonitoring. Applied Geochemistry104, 71-82.
Kumar, V., Pandita, S., Sidhu, G.P., Sharma, A., Khanna, K., Kaur, P., Bali, A.S., & Setia, R. (2020). Copper bioavailability, uptake, toxicity and tolerance in plants: a comprehensive review. Chemosphere. 262,127810.
Li, L., Zhang, Y., Ippolito, J.A., Xing, W., Qiu, K., & Yang, H. (2020). Lead smelting effects heavy metal concentrations in soils, wheat, and potentially humans. Environmental Pollution, 257,113641.
Long, E.R., MacDonald, D.D., Smith, S.L., & Calder, F.D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental management, 19(1), 81-97.
MacDonald, D.D., Ingersoll, C.G., Berger, T.A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39(1), 20-31.
Madhu, P.M., & Sadagopan, R.S. (2020). Effect of heavy metals on growth and development of cultivated plants with reference to cadmium, chromium and lead–a review. Journal of Stress Physiology & Biochemistry, 16(3), 84-102.
Martínez-López, S., Martínez-Sánchez, M.J., Pérez-Sirvent, C., Bech, J., Martínez, M.D., & García-Fernandez, A.J. (2014). Screening of wild plants for use in the phytoremediation of mining-influenced soils containing arsenic in semiarid environments. Journal of Soils and Sediments, 14(4), 794-809.
Moezzipour, A., Pourtahmasi, K., Motesharezadeh, B., Oladi, R., & Ramezani, A. (2020). Effect of irrigation with municipal landfill leachate on the chemicals content of the tree shoots of Populous (Populus deltoides) and Fraxinus (Fraxinus excelsior), Iranian Journal of Forest, 11(4), 458-475.
Moreira, T.C., Amato-Lourenco, L.F., da Silva, G.T., Saldiva de Andre, C.D., de Andre, P.A., Barrozo, L.V., Singer, J.M., Saldiva, P.H., Saiki, M., & Locosselli, G.M. (2018). The use of tree barks to monitor traffic related air pollution: a case study in São Paulo–Brazil. Frontiers of Environmental Science, 6,1-12.
Nazariyat, S., Hodaji, M., & Besalatpour, A. (2017). Modeling the Pb Distribution Using Support Vector Machines in Surface Soil of the Lands Surrounding the Dezful-Ahvaz Road. Iranian Journal of Soil Research, 31(1), 143-153.
Nazir, F., Hussain, A., & Fariduddin, Q. (2019). Hydrogen peroxide modulate photosynthesis and antioxidant systems in tomato (Solanum lycopersicum L.) plants under copper stress. Chemosphere. 230, 544-58.
Nemerow, N.L. (1991). Stream, lake, estuary, and ocean pollution. in L. Nelson (Eds). Environmental Engineering Series: Vol. 13, Van Nostrand Reinhold Publishing Co, (pp 472). New York: Wiley Online Librara.
Niu, Y., Jiang, X., Wang, K., Xia, J., Jiao, W., Niu, Y., & Yu, H. (2020). Meta analysis of heavy metal pollution and sources in surface sediments of Lake Taihu, China. Science of the Total Environment, 700, 134509. 
Noulas, C., Tziouvalekas, M., & Karyotis, T. (2018). Zinc in soils, water and food crops. Journal of Trace Elements in Medicine and Biology, 49, 252-60.
Ozden, B., Guler, E., Vaasma, T., Horvath, M., Kiisk, M., & Kovacs, T. (2018). Enrichment of naturally occurring radionuclides and trace elements in Yatagan and Yenikoy coal-fired thermal power plants, Turkey. Journal of Environmental Radioactivity, 188, 100-107.
Parzych, A., Mochnacký, S., Sobisz, Z., Kurhaluk, N., & Polláková, N. (2017). Accumulation of heavy metals in needles and bark of Pinus species. Folia forestalia Polonica. Series A. Forestry, 59(1), 34-44.
Raj, D., & Maiti, S.K. (2019). Bioaccumulation of potentially toxic elements in tree and vegetable species with associated health and ecological risks: a case study from a thermal power plant, Chandrapura, India. Rendiconti Lincei. Scienze Fisiche e Naturali, 30(3), 649-65.
Romeo, S., Francini, A., Ariani, A., & Sebastiani, L. (2014). Phytoremediation of Zn: identify the diverging resistance, uptake and biomass production behaviours of poplar clones under high zinc stress. Water, Air, & Soil Pollution225(1), 1-12.
Solgi, E. (2016). Contamination of two heavy metals in topsoils of the urban parks Asadabad, Iran 2013. Archives of Hygiene Sciences, 5(2), 92-101.
Solgi, E., & Parmah, J. (2015). Analysis and assessment of nickel and chromium pollution in soils around Baghejar Chromite Mine of Sabzevar Ophiolite Belt, Northeastern Iran. Transactions of Nonferrous Metals Society of China, 25(7), 2380-7.
Solgi, E., Keramaty, M., & Solgi, M. (2020). Biomonitoring of airborne Cu, Pb, and Zn in an urban area employing a broad leaved and a conifer tree species. Journal of Geochemical Exploration, 208, 106400.
Tabibian, S., Bidarigh, S., & Torabian, S. (2019). Investigation on the adsorption of heavy metal in lead in a plane species in traffic areas in Rasht. Human & Environment. 17(4), 39-46.
Taşpınar, F., & Bozkurt, Z. (2018). Heavy metal pollution and health risk assessment of road dust on selected highways in Düzce, Turkey. Environmental Forensics, 19(4), 298-314.
Taylor, S.R. (1964). Abundance of chemical elements in the continental crust: a new table. Geochimica et Cosmochimica Acta, 28(8), 1273-85.
Wang, S., Sun, H., Ang, H.M., & Tadé, M.O. (2013). Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chemical Engineering Journal, 226, 336-347.
Wang, S., Wang, N., Pan, D., Zhang, H., & Sun, G. (2020). Effects of Copper Supplementation on Blood Lipid Level: a Systematic Review and a Meta-Analysis on Randomized Clinical Trials. Biological Trace Element Research, 199(8), 2851-2857.
Wuana, R.A., & Okieimen, F.E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Notices, 2011, 1-20.
Yousaf, M., Mandiwana, K.L., Baig, K.S., & Lu, J. (2020). Evaluation of Acer rubrum Tree Bark as a Bioindicator of Atmospheric Heavy Metal Pollution in Toronto, Canada. Water, Air, & Soil Pollution, 231(8), 1-9.