مدل‌سازی مطلوبیت زیستگاه خفاش‌های غارزی شهرستان رودبار به‌منظور معرفی یکان حفاظت- مدیریت جنگل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مدیریت محیط ‌زیست، دانشکدۀ علوم و فنون دریایی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران

2 استادیار گروه محیط‌ زیست، دانشکدۀ علوم و فنون دریایی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران

3 دانشیار گروه محیط زیست، دانشکدۀ محیط زیست و منابع طبیعی دانشگاه تهران، کرج، ایران

4 استاد گروه محیط ‌زیست، دانشکدۀ علوم و فنون دریایی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران

10.22034/ijf.2022.321103.1837

چکیده

مدیریت منابع، آشفتگی‌های طبیعی و زیستگاه حیات ‌وحش، مهم‌ترین مؤلفه‌های مدیریت جنگل‌اند. مدیران برای دستیابی به اهداف مدیریتی و حفاظتی، نیازمند اطلاعات اکولوژیک روشن از توزیع لکه‌های داغ تنوع زیستی در بستری از سیمای جنگلی- کوهستانی هستند. خفاش‌های غارزی به‌عنوان گونۀ سنگ‌ سرطاق غارها و شاخص اکولوژیک کیفیت جنگل به تغییرات اکوسیستم حساس‌اند و مدل‌های آشکارساز فضایی به‌عنوان ابزاری مناسب برای شناسایی مناطق حساس زیستی در دستیابی به زیستگاه‌های کلیدی جنگل کاربرد دارند. در این پژوهش از موقعیت جغرافیایی غارهای شناسایی‌شده در منطقه برای مدل‌سازی مطلوبیت زیستگاه لانه‌گزینی خفاش‌ها استفاده شد. مدل‌های فضایی با استفاده از متغیرهای اراضی کشاورزی، جهت، آب‌و‌هوا، جنگل، شاخص سبزینگی، بارش، مرتع و منابع آبی (ترکیبی از رودخانه‌ها و روددره‌ها) و به‌کارگیری شش الگوریتم Brt، Mars، Mda،Rf ،Rpart  و Svm به‌صورت مجزا و گروهی مدل‌سازی شدند. براساس معیار AUC مناسب‌ترین مدل‌ها، مدل‌های  RfوBrt  با مقدار 87/0 و مدل Rpart با مقدار 67/0 کمترین میزان این سنجه را داشته‌اند. متغیرهای منابع آبی و جنگل بیشترین سهم را در توضیح مدل‌ها داشته‌اند. زیستگاه‌های مطلوب پیش‌بینی‌شده در مدل گروهی به‌عنوان یکان مدیریت اکوسیستم جنگل در سطح سیمای سرزمین تعیین شد و ناحیه‌ای از این یکان که توسط جاده‌ها و فعالیت‌هایی مانند برداشت شن و ماسه و توسعۀ گردشگری در معرض تهدید است به‌عنوان یکان حفاظت معرفی شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Habitat suitability modeling of cave dweller bats in Rudbar county to introduce the conservation-management unit of forest

نویسندگان [English]

  • Sh Peyravi Latif 1
  • R Hejazi 2
  • S Ashrafi 3
  • S.A. Jozi 4
1 Ph.D. Student of Environment Management, Faculty of Marine Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, I. R. Iran
2 Assistant Prof., Dept. of Environment, Faculty of Marine Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, I. R. Iran
3 Associate Prof., Dept. of Environmental, Faculty of Natural Resources, University of Tehran, Karaj, I. R. Iran
4 Prof., Dept. of Environment, Faculty of Marine Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, I. R. Iran
چکیده [English]

Forest management involves resource management, natural disturbance, and wildlife habitat. To achieve a sustainable equilibrium, managers require explicit ecological information about the distribution of biodiversity hotspots in the matrix of the mountain-forest landscape. Cave-roosting bats are a keystone species in caves and an ecological indicator of forest quality that are sensitive to ecosystem changes caused by human activities. Spatial explicit models are appropriate tools to identify biologically sensitive areas in achieving key habitats of the forest. In this study, we used the geographical locations of caves in the study area for habitat suitability modeling of cave-dwelling bats. We used spatial explicit models with variables of agriculture, aspect, climate, forest, NDVI, precipitation, range, and water resources (a combination of rivers and streams) and six algorithms: Boosted Regression Tree, Multivariate Adaptive Regression Splines, Mixture Discriminant Analysis, Random Forest, Recursive Partitioning and Regression Trees, and Support Vector Machines in the sdm package. According to the AUC criterion, the best models were RF and BRT with a value of 0.87, and the RPART model with a value of 0.67 had the lowest value of this measure. In explaining the models, water resources and forest variables had the highest scores. We determined the suitable habitats predicted by the ensemble model as a unit of forest ecosystem management at the landscape level. An area of the management unit that has been disrupted by roads and other activities such as sand extraction and tourism development has been determined as a conservation unit.

کلیدواژه‌ها [English]

  • Ecological indicator
  • Ensemble model
  • Keystone species
  • Riparian habitats
Altringham, J. (2011). Bats: From Evolution to Conservation. Oxford University Press, 1-352.
Askaripour, N. (2018). Summer roosting habitat Selection of Rhinopoma microphyllum & Rhinopoma muscatellum in Iran. MSc thesis, University of Tehran Faculty of Natural resources Department of Environmental Science and Engineering, karaj, Iran, 105 p.
Battersby, J. (2010). Guidelines for Surveillance and Monitoring of European Bats. EUROBATS Publication Series No. 5. UNEP/EUROBATS Secretariat, Bonn, Germany, 95 p.
Benda, P., Faizolâhi, K., Andreas, M., Obuch, J., Reiter, A., Ševčík, M., Uhrin, M., Vallo, P., & Ashrafi, S. (2012). Bats (Mammalia: Chiroptera) of the Eastern Mediterranean and Middle East. Part 10. Bat fauna of Iran. Acta Societatis Zoologicae Bohemicae, 76, 163-582.
Bolliger, J., Hennet, T., Wermelinger, B., Bosch, R., Pazur, R., Blum, S., Haller, J., & Obrist, M.K. (2020). Effects of traffic-regulated street lighting on nocturnal insect abundance and bat activity. Basic and Applied Ecology, 47, 44-56.
Boutin, S., & Hebert, D. (2002). Landscape Ecology and Forest Management: Developing an Effective Partnership. Ecological Applications, 12, 390-397.
Brook B.W., Sodhi N.S., & Bradshaw C. J. (2008). Synergies among extinction drivers under global change. Trends in Ecology and Evolution, 23(8), 453-460.
Faria, D. (2006). Phyllostomid bats of a fragmented landscape in the north-eastern Atlantic forest, Brazil. Journal of Tropical Ecology, 22, 531-542.
Finch, D., Corbacho, D. P., Schofield, H., Davison, S., Wright, P., Broughton, R., & Mathews, F. (2020). Modelling the functional connectivity of landscapes for greater horseshoe bats Rhinolophus ferrumequinum at a local scale. Landscape Ecology, 35, 577-589.
Forman, R.T. (1995). Land Mosaics: the ecology of landscapes and regions. Cambridge: Cambridge University Press. 656 p.
Franklin, J.F. (1992). Scientific basis for new perspectives in forests and streams, 25-72.
Furey, N M., & Racey P.A. (2016). Conservation Ecology of Cave Bats. In: Voigt C., Kingston T. (eds) Bats in the Anthropocene: Conservation of Bats in a Changing World. Springer, Cham. 606 p.
García-Morales, R., Moreno, C.E., Badano, E.I., Zuria, I., Galindo-González, J., Rojas-Martı´nez A.E., & A´vila-Go´mez, E.S. (2016). Deforestation Impacts on Bat Functional Diversity in Tropical Landscapes. PLOS ONE, 11(12).1-16.
Ghadirian, O., Hemami, M.R., Soffianian, A., Malekian, M., Poormanafi, S., & Amiri, M. (2019). The prediction of Persian Squirrel Distribution Using a Combined Modeling Approach in the Forest Landscapes of Luristan Province. Iranian Journal of Applied Ecology, 8(1), 47-58. (In persian)
Haghgooy, T., & Pourbabaei, H. (2012). Presentation of flora, life form and chorotype of plants in Sadetarik Forest Park, Roudbar, Guilan. Iranian Journal of Forest, 3(4), 331-340. (In persian)
Haghighat Doust, A., & Waez-Mousavi, S.M. (2021). Frequency of tree micro-habitats in Persian ironwood-hornbeam forest at Bahramnia forestry plan (Gorgan). Journal of Wood and Forest Science and Technology, 27(4), 113-129. (In persian)
Hutson, A.M., Mickleburgh, S.P., & Racey, P.A. (2001). Microchiropteran bats: global status survey and conservation action plan. IUCN/SSC Chiroptera Specialist Group. IUCN, Gland, Switzerland and Cambridge, UK. 258 p.
Jones, G., Jacobs, D.S., Kunz, T.H., Willig, M.R., & Racey, P.A. (2009). Carpe Noctem: The importance of bats as bioindicators. Endangered Species Research, 8, 93-115.
Li, Ch., Lafortezza, R., Chen, J. (2011). Landscape Ecology in Forest Management and Conservation: Challenges and Solutions for Global Change. Springer, Berlin, Heidelberg press. 420 p. https://doi.org/ 10.1007/978-3-642-12754-0
Le Roux, M., Redon, M., Archaux, F., Long, J., Vincent, S., & Luque, S.  (2017). Conservation planning with spatially explicit models: a case for horseshoe bats in complex mountain landscapes. Landscape ecology, 32(5), 1005-1021.
Medellín, R.A., Wiederholt, R., & López-Hoffman, L. (2017). Conservation relevance of bat caves for biodiversity and ecosystem services. Biological Conservation, 211, 45-50.
Milen, D., Fisher, A., & Pavey, Ch. (2006). Models of the habitat associations and distributions of insectivorous bats of the Top End of the Northern Territory, Australia. Biological Conservation, 130, 370-385.
Noss R.F., & Cooperrider, A.Y. (1994). Saving Nature’s Legacy: Protecting and Restoring Biodiversity. Island Press, Washington DC. 443 p.
Peyravi Latif, Sh., Hejazi, R., Ashrafi, S., & Jozi, S. A. (2021). Biodiversity and abundance of bats community using bioacoustics method in mountain-forest ecosystem of Roudbar, Gilan province. Journal of Animal Environment, 13(1), 27-36. (In persian)
Pilehvar, B., Veiskarami, Gh., Taheri Abkenar, K., Soosani, J., & Akbari, H. (2010). Conservation priority setting of different vegetation types in off reserve areas of Zagros forests, based on their diversity contained. Iranian Journal of Forest, 2(1), 81-91. (In persian)
Rainho, A., & Palmeirim, J.M. (2011). The Importance of Distance to Resources in the Spatial Modelling of Bat Foraging Habitat. PLoS ONE, 6(4). 1-10.
Rainho, A. (2009). Summer foraging habitats in a Mediterranean region of the Iberian Peninsula. Acta Chiropterologica, 9, 171-181.
Razgour, O., Rebelo, H., Di Febbraro, M., & Russo, D. (2016). Painting maps with bats: species distribution modelling in bat research and conservation. Hystrix, the Italian Journal of Mammalogy, 27(1). 1-8.
Sadeghipour halimejani, S. (2015). Suggestions for Improving Tourism Industry in Roudbar: Cave Adventuring. MA thesis, Islamic Azad University Rasht Branch Faculty of Humanism, Department of Geography, Rasht, Iran, 171 p. (In persian)
Sagheb-Talebi, Kh., Sajedi, T., & Pourhashemi, M. (2014). Forests of Iran: a treasure from the past, a hope for the future. Dordrecht: Springer. 152 p.
Scott, S., McLaren, G., Jones, G., & Harris, S. (2010). The impact of riparian habitat quality on the foraging and activity of pipistrelle bats (Pipistrellus spp.). Journal of Zoology, 280, 371-378.
Sefidi, K., & Sadeghi, S.M.M. (2020). The diversity of microhabitats and the ecological value of habitat trees in oriental beech stands. Iranian Journal of Forest, 12(2), 147-160
Tohidifar, M., Moser, M., Zehzad, B., & Ghadirian, T. (2016). Biodiversity of the Hyrcanian Forests: A synthesis report. 10.13140/RG.2.2.31436.00649.
Voigt C.C., & Kingston, T. (2016). Bats in the Anthropocene. In: Voigt C., Kingston, T. (eds) Bats in the Anthropocene: Conservation of Bats in a Changing World. Springer, Cham press. 606 p.
Williams, J., O'Farrell, M., & Riddle, B. (2006). Habitat Use by Bats in a Riparian Corridor of the Mojave Desert in Southern Nevada. Journal of Mammalogy, 87(6), 1145–1153.
Woinarski, J.C.Z., Williams, R.J., Price, O., & Rankmore, B. (2005). Landscapes without boundaries: wildlife and their environments in Northern Australia. Wildlife Research, 32, 377-388.
Zarazúa-Carbajal, M., Avila-Cabadilla, L.D., Alvarez-Añorve, M.Y., Benítez-Malvido, J., & Stoner, K.E. (2017) Importance of riparian habitat for frugivorous bats in a tropical dry forest in western Mexico. Journal of Tropical Ecology. Cambridge University Press, 33(1), 74–82.