عملکرد رشد و پاسخ دفاعی نهال‌های گونۀ ون به تنش خشکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مربی پژوهشی، گروه پژوهشی محیط زیست طبیعی، پژوهشکدۀ محیط زیست جهاد دانشگاهی، رشت، ایران؛ دانش‌آموخته دکتری،گروه زیست‌شناسی، دانشکده علوم زیستی، دانشگاه آزاد اسلامی واحد تنکابن، تنکابن

2 استادیار،گروه زیست‌شناسی، دانشکدۀ علوم زیستی، واحد تنکابن، دانشگاه آزاد اسلامی، تنکابن، ایران

3 استاد، گروه باغبانی، دانشکدۀ کشاورزی، دانشگاه گیلان، رشت، ایران

10.22034/ijf.2023.345523.1874

چکیده

مطابق پیش‌بینی‌ها، خشکی در دهه‌های آینده احتمالاٌ به‌شدت افزایش خواهد یافت، بنابراین درک پاسخ‌های سازشی گونه‌های درختی که با این شرایط روبه‌رو می‌شوند اهمیت ویژه‌ای دارد. در این تحقیق تأثیر تنش خشکی بر پارامترهای ریخت‌شناسی، فیزیولوژی و بیوشیمیایی گونۀ جنگلی ون(Fraxinus excelsior L.)  از گونه‌های بومی هیرکانی ارزیابی شده است. آزمایش در قالب طرح کاملاٌ تصادفی روی نهال‌های یکساله و چهار سطح تنش خشکی 25 درصد (تنش شدید)، 50 درصد (تنش متوسط)، 75 درصد (تنش خفیف) و 100 درصد ظرفیت زراعی (بدون تنش) انجام گرفت. نتایج نشان داد که خشکی، رشد و زی‌تودۀ نهال‌ها را کاهش داد. میزان افت در تیمار تنش شدید نسبت به تیمار شاهد در صفت ارتفاع نهال‌ها، زی‌تودۀ کل، سطح برگ و شاخص سطح ویژۀ برگ به‌ترتیب 6/47، 2/43، 1/77 و 1/38 درصد بود، ولی نسبت ریشه به اندام هوایی 8/44 درصد افزایش نشان داد. با افزایش شدت تنش میزان کلروفیل ‌کل، کلروفیل a، کلروفیل b و میزان کاروتنوئید کاهش جزئی و غیرمعنی‌داری نشان داد. محتوای نسبی آب نهال‌ها، افت 20/34 و 18/23 درصدی در تنش شدید و متوسط نسبت به تیمار شاهد داشتند. افزایش پرولین و مالون‌ دی‌آلدئید در تیمار تنش شدید نسبت به تیمار شاهد به‌ترتیب 8/93 و 06/165 درصد بود. در تیمار تنش خفیف و متوسط افزایش فعالیت آنزیم سوپراکسید دیسموتاز 5 درصد و فعالیت آنزیم پراکسیداز به‌ترتیب 273 و 240 درصد مشاهده شد. داده‌های این تحقیق نشان می‌دهد که نهال‌های ون به کمک راهبرد اجتناب و تحمل خشکی مانند کاهش رشد و زی‌توده، افزایش نسبت ریشه به اندام هوایی، حفظ رنگیزه‌های فتوسنتزی و افزایش فعالیت‌های آنزیمی تا سطح تیمار 50 درصد ظرفیت زراعی توانایی سازش با شرایط کمبود آب را دارند و استفاده از این گونه برای جنگلکاری و احیای جنگل‌ها در مناطق در معرض خشکی توصیه می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Growth performance and defense response of Fraxinus excelsior L. seedlings to drought stress

نویسندگان [English]

  • M Ravanbakhsh 1
  • B Babakhani 2
  • M Ghasemnezhad 3
1 1Instructor, Environmental Research Institute, Academic Center for Education, Cultural Research (ACECR), Guilan, Rasht, Iran Ph.D. Graduated, Dept. of Biology, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
2 Assistant prof., Dept. of Biology, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
3 prof., Dept. of Horticultural Sciences, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
چکیده [English]

Drought is predicted to increase drastically in the coming decades, making it crucial to understand the adaptive responses of tree species to such conditions. This study evaluates the effect of drought stress on the morphological, physiological, and biochemical parameters of Fraxinus excelsior, a native species from the Hyrcanian forest. The experiment was conducted using a completely randomized design, where one-year-old seedlings were subjected to four water stress conditions: 25% (severe stress), 50% (moderate stress), 75% (mild stress), and 100% field capacity (no stress). Results showed that drought reduced the growth rate and biomass of seedlings. Compared to the control treatment, the rate of decline in seedling height, biomass, leaf area, and specific leaf area index was 47.6%, 43.2%, 77.1%, and 38.1%, respectively, in the severe stress treatment. The root-to-shoot ratio increased by 44.8%. As water stress increased, the content of chlorophyll, chlorophyll a, chlorophyll b, and carotenoids showed a slight and insignificant decrease. The relative water content of seedlings decreased by 34.20% and 23.18% in severe and moderate stress treatments compared to the control treatment. Proline and malondialdehyde increased by 93.8% and 165.06%, respectively, in the severe stress treatment. Superoxide dismutase enzyme activity increased by 5%, while peroxidase enzyme activity increased by 273% and 240% in mild and moderate stress treatments, respectively. The data from this study suggests that F. excelsior seedlings cope with drought through avoidance and tolerance strategies such as reducing growth and biomass, increasing root-to-shoot ratio, retaining photosynthetic pigments and osmotic potential, and increasing enzymatic activities up to 50% FC. This species is recommended for afforestation and reforestation in drought-prone areas.

کلیدواژه‌ها [English]

  • Antioxidant Enzyme
  • Field Capacity
  • Fraxinus excelsior L. Specific Leaf Area Index
  • Water Defici
Abdolahi, A., Arab, A.A.R., Parhizkar, P., & Pourmalekshah, A.A.M.A. (2017). Effect 0f Gap Size and Position With in Gaps On Growth Characters and Survival of Chestnut-Leaved Oak (Quercus Castaneifolia C. A. Mey.), Cappadocian Maple (Acer Cappadocicum Gled.) And Caucasian Alder (Alnus Subcordata C. A. Mey.). Iranian Journal of Forest and Poplar Research, 25(2), 275 – 285. (In Persian)
Abid, M., Ali, S., Qi, L.K., Zahoor, R., Tian, Z., Jiang, D., Snider, J.L., & Dai, T. (2018). Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Scientific reports, 8, 1-15. https://doi.org/10.1038/s41598-018-21441-7.
Ahani, H., Jalilvand, H., Vaezi, J., & Sadati, S.E. (2018). Drought stress on Elaeagnus rhamnoides L.) A. Nelson seedlings morphology. Journal of Plant Ecosystem Conservation, 5(11), 191-204. (In Persian)
Arnon, D.I. (1949) Copper enzymes in isolated chloroplasts. polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1–15. https://doi.org/10.1104/pp.24.1.1
Asgharpour, E., Azadfar, D., & Saeedi, Z. (2017) Evaluation of Acer cappadocicum Gled. seedlings to drought stress, Journal of Plant Research, 30(1), 199 – 214. (In Persian)
Attarod, P., Kheirkhah, F., Khalighi Sigaroodi, S., Sadeghi, M., & Bayramzadeh, V. (2017). Trend analysis of meteorological parameters and reference evapotranspiration in the Caspian region. Iranian Journal of Forest, 17(2), 171-185. (In Persian)
Bangar, P., Chaudhury, A., Tiwari, B., Kumar, S., Kumari, R., & Bhat, K.V. (2019). Morphophysiological and biochemical response of mungbean (Vigna radiata (L.)) Wilczek] varieties at different developmental stages under drought stress. Turkish Journal of Biology, 43(1), 58-69.https://doi.org/10.3906/biy-1801-64
Bargali, K., & Tewari, A. (2004). Growth and water relation parameters in drought-stressed Coriaria nepalensis seedlings. Journal of Arid Environments, 58(4), 505-512. https://doi.org/10.1016/j.jaridenv.2004.01.002
Bates, L.S., Waldran R.P., & Teare, I.D. (1973). Rapid determination of free proline for water studies. Plant and Soil, 39, 205–208. https://doi.org/10.1007/BF00018060
Batra, N.G., Sharma, V., & Kumari, N. (2014). Drought-induced changes in chlorophyll fluorescence, photosynthetic pigments, and thylakoid membrane proteins of Vigna radiata. Journal of Plant Interactions, 9(1), 712-721. https://doi.org/10.1080/17429145.2014.905801
Bhusal, N., Lee, M., Han, A.R., Han, A., & Kim, H.S. (2020). Responses to drought stress in Prunus sargentii and Larix kaempferi seedlings using morphological and physiological parameters. Forest Ecology and Management, 465,118099. https://doi.org/10.1016/j.foreco.2020.118099.
Boor, Z., Parad, G.A., Hosseini, S.M., & Ghanbary, E. (2021) Morphological, physiological, and enzymatic responses of Caucasian alder (Alnus subcordata C. A. Mey) seedlings to water deficit conditions by inoculation of Rhizophagus irregularis, Journal of Iranian Plant Ecophysiological Research, 16(61), 80-93. (In Persian)
Chakhchar, A., Wahbi, S., Lamaoui, M., Ferradous, A., El Mousadik, A., Ibnsouda-Koraichi, S., Filali-Maltouf, A., & El Modafar, C. (2015). Physiological and biochemical traits of drought tolerance in Argania spinosa. Journal of plant interactions, 10(1), 252-261. https://doi.org/10.1080/17429145.2015.1068386.
Deligoz, A., & Bayar, E. (2018). Drought stress responses of seedlings of two oak species (Quercus cerris and Quercus robur). Turkish Journal of Agriculture and Forestry, 42(2),114-123.https://doi.org/10.3906/tar-1709-29
Dias, M.C., Azevedo, C., Costa, M., Pinto, G., & Santos, C. (2014). Melia azedarach plants show tolerance properties to water shortage treatment: an ecophysiological study. Plant physiology and biochemistry, 75, 123-127. https://doi.org/10.1016/j.plaphy.2013.12.014.
Díaz-López, L., Gimeno, V., Simón, I., Martínez, V., Rodríguez-Ortega, W.M., & García-Sánchez, F. (2012). Jatropha curcas seedlings show a water conservation strategy under drought conditions based on decreasing leaf growth and stomatal conductance. Agricultural water management, 105(3), 48-56. https://doi.org/10.1016/j.agwat.2012.01.001.
Du L., Liu H, Guan, W, Li J. and Li J. (2019) Drought affects the coordination of belowground and aboveground resource‐related traits in Solidago canadensis in China. Ecology and evolution, 9: 9948-9960. https://doi.org/10.1002/ece3.5536.
Du, N., Guo, W., Zhang, X., & Wang, R. (2010). Morphological and physiological responses of Vitex negundo L. var. heterophylla (Franch.) Rehd. to drought stress. Acta physiologiae plantarum, 32(5), 839-848. https://doi.org/10.1007/s11738-010-0468-z.
Espahbodi, K., Mohammadnejad Kiasari, S., Barimani H., & Ghobadian, H. (2003). Investigation on the suitable spacing and combination of ash (Fraxinus excelsior L.) and maple (Acer velutinum Boiss) in plantations.‌ Iranian.Journal of Forest and Poplar Research, 11(1), 19-34. (In Persian)
Fallahchai, M.M. (2011). The quantitative and qualitative study of Alnus Subcordata, Acer Velutinum, Fraxinus Excelsior afforestated species in syahkal forest (case study in Series 1 of toutki forest). Natural Ecosystems of Iran, 1(3), 55 - 63. (In Persian)
Fang, J., Wu, F., Yang, W., Zhang, J., & Cai, H. (2012) Effects of drought on the growth and resource use efficiency of two endemic species in an arid ecotone. Acta Ecologica Sinica, 32, 195–201. https://doi.org/10.1016/j.chnaes.2012.05.001.
Gao, S., Wang, Y., Yu, S., Huang, Y., Liu, H., Chen, W., & He, X. (2020). Effects of drought stress on growth, physiology and secondary metabolites of Two Adonis species in Northeast China. Scientia Horticulturae, 259, 108795. https://doi.org/10.1016/j.scienta.2019.108795
Ge, Y., He, X., Wang, J., Jiang, B., Ye, R., & Lin, X. (2014). Physiological and biochemical responses of Phoebe bournei seedlings to water stress and recovery. Acta Physiologiae Plantarum, 36,1241-1250. https://doi.org/10.1007/s11738-014-1502-3.
Geng, D.L., Lu, L.Y., Yan, M.J., Shen, X.X., Jiang, L.J., Li, H.Y., Wang, L.P., Yan, Y., Xu, J.D., Li, C.Y., & Yu, J.T. (2019). Physiological and transcriptomic analyses of roots from Malus sieversii under drought stress. Journal of Integrative Agriculture, 18(6), 1280-1294. https://doi.org/10.1016/S2095-3119(19)62571-2.
Ghaffari, H., Tadayon, M.R., Nadeem, M., Cheema, M., & Razmjoo, J. (2019). Proline-mediated changes in antioxidant enzymatic activities and the physiology of sugar beet under drought stress. Acta physiologiae plantarum, 41(2), 22-35. https://doi.org/10.1007/s11738-019-2815-z
Giannopolitis, C.N., & Ries, S.K. (1977). Superoxide dismutases: II. Purification and quantitative relationship with water-soluble protein in seedlings. Plant physiology, 59(2), 315-8. https://doi.org/10.1104/pp.59.2.315
Guo, X., Guo, W., Luo, Y., Tan, X., Du, N., & Wang, R. (2013). Morphological and biomass characteristic acclimation of trident maple (Acer buergerianum Miq.) in response to light and water stress. Acta Physiologiae Plantarum, 35, 1149–1159 https://doi.org/10.1007/s11738-012-1154-0.
Guo, X., Luo, Y.J., Xu, Z.W., Li, M.Y., & Guo, W.H. (2019). Response strategies of Acer davidii to varying light regimes under different water conditions. Flora, 257(8),151423. https://doi.org/10.1016/j.flora.2019.151423.
Guo, Y.Y., Yu, H.Y., Yang, M.M., Kong, D.S., & Zhang, J. (2018). Effect of drought stress on lipid peroxidation, osmotic adjustment and antioxidant enzyme activity of leaves and roots of Lycium ruthenicum Murr. seedling. Russian Journal of Plant Physiology, 65(2), 244-250. https://doi.org/10.1016/j.flora.2019.151423.
Haider, M.S., Kurjogi, M.M., Khalil-ur-Rehman, M., Pervez, T., Songtao, J., Fiaz, M., & Fang, J. (2018). Drought stress revealed physiological, biochemical and gene-expressional variations in ‘Yoshihime’peach (Prunus Persica L) cultivar. Journal of Plant Interactions, 13(1), 83-90. https://doi.org/10.1080/17429145.2018.1432772
Jafari, M. (2008). Investigation and analysis of climate change factors in Caspian Zone forests for last fifty years. Iranian Journal of Forest and Poplar Research, 16(2), 326-314. (In Persian)
Jahanbazy Goujani, H., Hosseini Nasr, S.M., Sagheb-Talebi, K., & Hojjati, S.M. (2013) Effect of drought stress induced by altitude, on four wild almond species. Iranian Journal of Forest and Poplar Research, 21(2), 373- 86. (In Persian)
Lei, Y., Yin, C., & Li, C. (2006). Differences in some morphological, physiological, and biochemical responses to drought stress in two contrasting populations of Populus przewalskii. Physiologia Plantarum, 127(2),182-191. https://doi.org/10.1111/j.1399-3054.2006.00638.x.
Li, L., Liu, Y., Liu, Y., He B., Wang, M., Yu, C., & Weng, M. (2015). Physiological response and resistance of three cultivars of Acer rubrum L. to continuous drought stress. Acta Ecologica Sinica, 35(6),196-202. https://doi.org/10.1016/j.chnaes.2015.09.006
Lichtenthaler, HK. (1987). Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods in Enzymology, 148, 350–382. https://doi.org/10.1016/0076-6879 (87)48036-1.
Liu, B., Liang, J., Tang, G., Wang, X., Liu, F., & Zhao, D. (2019) Drought stress affects on growth, water use efficiency, gas exchange and chlorophyll fluorescence of Juglans rootstocks. Scientia Horticulturae, 250, 230–235. https://doi.org/10.1016/j.scienta.2019.02.056.
Medeiros, D.B., Silva, E.C.D., Nogueira, R.J.M.C., Teixeira, M.M., & Buckeridge, M.S. (2013). Physiological limitations in two sugarcane varieties under water suppression and after recovering. Theoretical and Experimental Plant Physiology, 25(3), 213-222. https://doi.org/10.1016/0076-6879 (87)48036-1.
Medeiros, D.B., Silva, E.C.D., Santos, H.R.B., Pacheco, C.M., Musser, R.D.S., & Nogueira, R.J.M.C., (2012). Physiological and biochemical responses to drought stress in Barbados cherry. Brazilian Journal of Plant Physiology, 24(3),181-192. https://doi.org/10.1590/S1677-04202012000300005
 Mosayeb Nezhad, I., Rostami Shahraji, T., Kahneh, E., & Pourbabaei, H. (2008). Evaluation of native broadleaved forest plantations in east of guilan province. Iranian Journal of Forest and Poplar Research. 15(4), 311-319. (In Persian)
Moustaka, J., Ouzounidou, G., Sperdouli, I., & Moustakas, M. (2018). Photosystem II is more sensitive than photosystem I to Al3+ induced phytotoxicity. Materials, 11(9), 1772. https://doi.org/10.3390/ma11091772
 Norouzi haroni, N., & Tabari koochksaraee, M. (2015). Morpho-Physiological Responses of Black Locust (Robinia pseudoacacia L.) Seedlings to Drought Stress. Iranian Journal of Forest and wood product, 68(3),715-727. (In Persian)
Panahi, P., Pourhashemi, M., & Hasaninejad, M. (2013). Comparison of Specific Leaf Area in Three Native Oaks of Zagros in National Botanical Garden of Iran, Ecology of Iranian Forest, 1(2), 12-26. (In Persian)
Plewa, M.J., Smith, S.R., & Wagner, E.D. (1991). Diethyldithiocarbamate suppresses the plant activation of aromatic amines into mutagens by inhibiting tobacco cell peroxidase. Mutation research/fundamental and molecular mechanisms of mutagenesis, 247(1), 57-64. https://doi.org/10.1016/0027-5107(91)90033-K
Sadeghipour, A., & Kartoolinejad, D. (2017). Carbon uptake and leaf gas exchange of ash tree (Fraxinus excelsior) affected by different intensities of photosynthetically active radiation (case study: central Europe forests). Iranian Journal of Natural Resources, 70(2), 373 – 384) .In Persian)
Saeidi Abueshaghi, Z., Pilehvar, B., & Sayedena, S.V. (2021) Effect of drought stress on morphophysiological and biochemical traits of purple (Cercis siliquastrum L.) seedlings. Iranian Journal of Forest and Poplar Research, 29 (1), 91 – 100. (In Persian)
Sapeta, H., Costa, J.M., Lourenco, T., Maroco, J., & Van der Linde, P., & Oliveira, M. M. (2013). Drought stress response in Jatropha curcas: growth and physiology. Environmental and Experimental Botany, 85, 76-84. https://doi.org/10.1016/j.envexpbot.2012.08.012
Sarker, U., & Oba, S. (2018). Catalase, superoxide dismutase and ascorbate-glutathione cycle enzymes confer drought tolerance of Amaranthus tricolor. Scientific reports, 8(1), 1-12. https://doi.org/10.1038/s41598-018-34944-0
Saxton, K.E., Rawls, W.J., Romberger, J.S., & Papendick, R.I. (1986). Estimating generalized soil-water characteristics from texture. Soil Science Society of America Journal, 50(4), 1031-1036. https://doi.org/10.2136/sssaj1986.03615995005000040039x
Silva, E.C.D., Silva, M.F., Nogueira, R.J., & Albuquerque, M.B. (2010). Growth evaluation and water relations of Erythrina velutina seedlings in response to drought stress. Brazilian Journal of Plant Physiology, 22, 225-233.
Toscano, S., Farieri, E., Ferrante, A., & Romano, D. (2016). Physiological and Biochemical Responses in Two Ornamental Shrubs to Drought Stress. Frontiers in Plant Science,7, 645. https://doi.org/10.3389/fpls.2016.00645
Wang, R., Gao, M., Ji, S., Wang, S., Meng, Y., & Zhou, Z. (2016). Carbon allocation, osmotic adjustment, antioxidant capacity and growth in cotton under long-term soil drought during flowering and boll-forming period. Plant Physiology et Biochemistry 107(10), 137-146. https://doi.org/10.1016/j.plaphy.2016.05.035
Wu, J., Li, J., Su, Y., He, Q., Wang, J., Qiu, Q., & Ma, J. (2017). A morphophysiological analysis of the effects of drought and shade on Catalpa bungei plantlets. Acta Physiologiae Plantarum, 39(3), 1-11. https://doi.org/10.1007/s11738-017-2380-2.
Wu, M., Zhang, W.H., Ma, C., & Zhou, J.Y. (2013). Changes in morphological, physiological, and biochemical responses to different levels of drought stress in Chinese cork oak (Quercus variabilis Bl.) seedlings. Russian journal of plant physiology, 60(5), 681-692. https://doi.org/10.1134/S1021443713030151.
Ying, Y.Q., Song, L.L., Jacobs, D.F., Mei, L., Liu, P., Jin, S.H., & Wu, J.S. (2015). Physiological response to drought stress in Camptotheca acuminata seedlings from two provenances. Frontiers inPlant Science, 6, 361. https://doi.org/10.3389/fpls.2015.00361.
Zarafshar, M., Akbarinia, M., Hosseini, S.M., & Rahaie, M. (2016) Drought resistance of wild pear (Pyrus Boisseriana Buhse.). Journal of forest and wood products, 69(1), 97-110. (In Persian)