تغییرات ذخیرۀ کربن خاک برحسب سن در توده‌های جنگلکاری‌شدۀ افرا پلت (.Acer velutinum Boiss) (مطالعۀ موردی: جنگل‌های نکا- ظالمرود)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم و مهندسی جنگل، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران.

2 استاد، گروه علوم و مهندسی جنگل، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران.

10.22034/ijf.2023.357277.1885

چکیده

تغییرپذیری خصوصیات خاک با گذشت زمان در توده‌های جنگلکاری به‌منظور تعیین محدودۀ سنی بهینه برای اهداف مختلف مدیریتی از جمله موضوعات پژوهشی است که در ایران کمتر به آن توجه شده است. در این پژوهش تغییرات ذخیرۀ کربن خاک برحسب سن در توده‌های جنگلکاری‌شدۀ افرا پلت در جنگل‌های نکا- ظالمرود بررسی شد. سه سن تودۀ 20-10، 30-20 و 40-30 سال در منطقه انتخاب و برای آماربرداری از قطعات نمونه 20×20 متر با استفاده از روش منظم- تصادفی با ابعاد شبکه 50×50 متر استفاده شد. سپس پنج نمونه خاک (در مرکز و چهارگوش قطعه نمونه) از خاک سطحی (15-0 سانتی‌متری) با استفاده از استوانه فلزی در سه قطعه نمونه در هر طبقۀ سنی برداشت شد. نتایج نشان داد که از بین مشخصه‌های فیزیکی بیشترین مقدار رطوبت خاک (33/37 درصد) متعلق به سن تودۀ 40-30 ساله و بیشترین مقدار جرم مخصوص ظاهری (17/2 گرم بر سانتی‌متر مکعب) متعلق به سن تودۀ 20-10 ساله است. بررسی ویژگی‌های شیمیایی خاک نشان داد که به‌جز واکنش خاک و هدایت الکتریکی، بقیۀ مشخصه‌ها تحت تأثیر سن توده‌ها اختلاف معنی‌داری دارند. بیشترین فسفر قابل جذب، نیتروژن کل و کربن آلی به‌ترتیب با 81/7 میلی‌گرم بر کیلوگرم، 35/0 و 1/6 درصد در تودۀ 40-30 ساله و بیشترین پتاسیم قابل جذب با 91/638 میلی‌گرم بر کیلوگرم در تودۀ 20-10 ساله مشاهده شد. نتایج بررسی ترسیب کربن نشان داد که تودۀ 40-30 ساله با 89/305 تن در هکتار کربن ترسیب‌شده بیشترین توانایی را دارد. بنابراین می‌توان نتایج این پژوهش مبنی بر سن بهینۀ ذخیرۀ کربن (40-30 سال) برای جنگلکاری افراپلت را برای اهداف مدیریتی مختلف معرفی کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Variations of soil carbon storage according to age in reforested stands of Acer velutinum Boiss. (case study: Neka-Zhalmroud forests)

نویسندگان [English]

  • M Saeidi 1
  • , S.M. Hojjati 2
  • A Fallah 2
1 Ph.D. Student, Dept. of Forest Science and Engineering, Faculty of Natural Resources, Sari University of Agricultural Sciences and Natural Resources, I. R. Iran
2 2Prof., Dept. of Forest Science and Engineering, Faculty of Natural Resources, Sari University of Agricultural Sciences and Natural Resources, I. R. Iran.
چکیده [English]

The study of soil property variability over time in forest stands to determine the optimal age range for various management purposes is a research topic that has received limited attention in Iran. This research aimed to investigate the changes in soil carbon storage according to age in reforested stands of Acer velutinum in the Neka-Zalemroud forests. Three age groups were selected: 10-20, 20-30, and 30-40 years. Statistical analysis was conducted using 20 × 20 m sample plots and a systematic-random method with 50 × 50 m grid dimensions. Five soil samples (in the center and square of the sample plot) were taken from the surface soil (0-15 cm) in each age class studied. The results showed that among the physical characteristics, the highest soil moisture (37.33%) was found in the 30-40 year age group, and the highest bulk density  (2.17 grams per cubic centimeter) was found in the 10-20 year age group. Upon examining the chemical characteristics of the soil, it was found that apart from acidity and electrical conductivity, the rest of the characteristics had significant differences influenced by the age of the stand. The highest amounts of absorbable phosphorus (7.81 mg/kg), total nitrogen (0.35%), and organic carbon (6.1%) were found in the 30-40 year old stand, and the highest amount of absorbable potassium (638.91 mg/kg) was found in the 10-20 year old stand. The carbon sequestration study showed that the 30-40-year-old stand had the greatest ability among the stands, with 305.89 tons of carbon sequestered per hectare. Therefore, based on the optimal age of carbon storage (30-40 years) for reforested Acer velutinum, the results of this research can be prescribed for different management purposes.

کلیدواژه‌ها [English]

  • reforested
  • forest soil
  • soil age
  • soil physiochemistry
 
Ahenkorah, Y. (1981). The influence of environment of growth and production of the cacao tree: soils and nutrition. In Proceedings of the 7th International Cocoa Research Conference, 4-12, 167-176.
Alazmani, M., Hojati, S.M., Waez-Mousavi, S.M., & Tafazoli, M. (2021). Effect of alder plantation age on soil carbon sequestration. Forest Research and Development7(2), 279-291. DOI: 10.30466/jfrd.2021.121058 (In Persian)
Ali-Ehyaee, M., & Behbahanizadeh, A.A. (1994). Description of soil chemical decomposition methods. Soil and Water Research Institutes893, pp.14-6.
Arevalo, C.B., Bhatti, J.S., Chang, S.X., & Sidders, D. (2009). Ecosystem carbon stocks and distribution under different land-uses in north central Alberta, Canada. Forest Ecology and Management257(8), 1776-1785. DOI: 10.1016/j.foreco.2009.01.034
Arora, G., Chaturvedi, S., Kaushal, R., Nain, A., Tewari, S., Alam, N.M. & Chaturvedi, O.P. (2014). Growth, biomass, carbon stocks, and sequestration in an age series of Populus deltoides plantations in Tarai region of central Himalaya. Turkish Journal of Agriculture and Forestry38(4), 550-560. DOI:10.3906/tar-1307-94
Arthur, A., Acquaye, S., Cheng, W., Dogbatse, J.A., Konlan, S., Domfeh, O., & Quaye, A.K. (2022). Soil carbon stocks and main nutrients under cocoa plantations of different ages. Soil Science and Plant Nutrition68(1), 99-103. DOI: 10.1080/00380768.2022.2029219
Askari, Y., Iranmanesh, Y., & Pourhashemi, M. (2021). The economic value and comparison of carbon storage in different forest areas in Kohgiluyeh and Boyer-Ahmad province. Iranian Journal of Forest, 13(2), 169-182. DOI: 10.22034/IJF.2021.276293.1767 (In Persian)
Bot, A., & Benites, J. (2005). The importance of soil organic matter: Key to drought-resistant soil and sustained food production (No. 80). Food & Agriculture Org.
Breda, N., Huc, R., Granier, A., & Dreyer, E. (2006). Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science63(6), 625-644. DOI: 10.1051/forest:2006042
Cao, J., Gong, Y., Adamowski, J.F., Deo, R.C., Zhu, G., Dong, X., Zhang, X., Liu, H., & Xin, C. (2019). Effects of stand age on carbon storage in dragon spruce forest ecosystems in the upper reaches of the Bailongjiang River basin, China. Scientific Reports, 9(1), 1-11. DOI: 10.1051/forest:2006042
Cao, J., Zhang, X., Deo, R., Gong, Y., & Feng, Q. (2018). Influence of stand type and stand age on soil carbon storage in China’s arid and semi-arid regions. Land Use Policy78, 258-265. DOI: 10.1016/j.landusepol.2018.07.002
Chauhan, S.K., Naveen, G., Sudhir, Y., & Rajni, C. (2009). Biomass and carbon allocation in different parts of agroforestry tree species. Indian Forester135(7), 981-993.
Chauhan, S.K., Sharma, S.C., Chauhan, R., & Naveen, G. (2010). Accounting poplar and wheat productivity for carbon sequestration in agri-silvicultural system. Indian Forester136(9), 1174-1182.
Chen, G.S., Yang, Z.J., Gao, R., Xie, J.S., Guo, J.F., Huang, Z.Q., & Yang, Y.S. (2013). Carbon storage in a chronosequence of Chinese fir plantations in southern China. Forest Ecology and Management300, 68-76. DOI: 10.1016/j.foreco.2012.07.046
Chen, X., & Li, B.L. (2003). Change in Soil Carbon and Nutrient Storage after Human Disturbance of a Primary Korean Pine Forest in Northeast China. Forest Ecology and Management, 186, 197-206.
Cheng, X., Han, H., Kang, F., Song, Y., & Liu, K. (2014). Variation in biomass and carbon storage by stand age in pine (Pinus tabulaeformis) planted ecosystem in Mt. Taiyue, Shanxi, China. Journal of Plant Interactions9(1), 521-528. DOI: 10.1080/17429145.2013.862360
Dang, P., Yu, X., Le, H., Liu, J., Shen, Z., & Zhao, Z. (2017). Effects of stand age and soil properties on soil bacterial and fungal community composition in Chinese pine plantations on the Loess Plateau. PLoS One12(10), e0186501. DOI: 10.1371/journal.pone.0186501
Dossa, E.L., Arthur, A., Dogbe, W., Mando, A., Afrifa, A.A., & Acquaye, S. (2018). An assessment of inherent chemical properties of soils for balanced fertilizer recommendations for cocoa in Ghana. In Improving the Profitability, Sustainability and Efficiency of Nutrients Through Site Specific Fertilizer Recommendations in West Africa Agro-Ecosystems, 1, 325-336. DOI: 10.1007/978-3-319-58789-9_18
El Tahir, B.A., Ahmed, D.M., Ardo, J., Gaafar, A.M., & Salih, A.A. (2009). Changes in soil properties following conversion of Acacia senegal plantation to other land management systems in North Kordofan State, Sudan. Journal of Arid Environments73(4-5), 499-505. DOI: 10.1016/j.jaridenv.2008.11.007
Gao, R., Chuai, X., Ge, J., Wen, J., Zhao, R., & Zu, T. (2022). An integrated tele-coupling analysis for requisition–compensation balance and its influence on carbon storage in China. Land Use Policy, 116, 106057. DOI: 10.1016/j.landusepol.2022.106057
Gera, M. (2012). Popular culture for speedy carbon sequestration in India: a case study from Terai region of Uttarakhand. Envis Forestry Bulletin12, 75-83.
Göransson, H., Welc, M., Bünemann, E.K., Christl, I., & Venterink, H. O. (2016). Nitrogen and phosphorus availability at early stages of soil development in the Damma glacier forefield, Switzerland; implications for establishment of N2-fixing plants. Plant and soil404(1), 251-261. DOI: 10.1007/s11104-016-2821-5
Gupta, N., Kukal, S.S., Bawa, S.S., & Dhaliwal, G.S. (2009). Soil organic carbon and aggregation under poplar based agroforestry system in relation to tree age and soil type. Agroforestry Systems76(1), 27-35. DOI: 10.1007/s10457-009-9219-9
Haghdoost, N., Akbarinia, M., Hosseini, S.M., & Kooch, Y. (2011). Conversion of Hyrcanian degraded forests to plantations: Effects on soil C and N stocks. Annals of  Biological Research2, 385-399.
Han, X., Zhao, F., Tong, X., Deng, J., Yang, G., Chen, L., & Kang, D. (2017). Understanding soil carbon sequestration following the afforestation of former arable land by physical fractionation. Catena150, 317-327. DOI: 10.1016/j.catena.2016.11.027
Hashemi, S.F., Hojati, S.M., & Nasr, S.M.H. (2012). Soil chemical properties, amount of litterfall and nutrients recycling into Caucasian elm, maple and ash plantation stands at Darabkola Experimental Forest Station. Iranian Journal of Forest and Poplar Research20(4), 645-655. DOI: 10.22092/IJFPR.2012.107481 (In Persian)
Hinsinger, P., & Jaillard, B. (1993). Root‐induced release of interlayer potassium and vermiculitization of phlogopite as related to potassium depletion in the rhizosphere of ryegrass. Journal of Soil Science44(3), 525-534.
Hojjati, S.M., Tafazoli, M., Imani, M., Alazmani, M., Fallah, A., & Pourmajidian, M.R. (2023). Variation in carbon sequestration and soil properties in relation to stand age in maple and alder plantations. Journal of Sustainable Forestry, 42(6), 640-654. DOI: 10.1080/10549811.2022.2059516.
Jafarihaghighi, M. (2003). Soil analysis methods: sampling and important physical and chemical analyzes "with emphasis on theoretical and practical principles". Nedaye Zoha Press, Tehran, 240p. (In Persian).
Jobbagy, E.G., & Jackson, R.B. (2001). The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry53(1), 51-77.
Kaushal, R., Verma, K.S., Chaturvedi, O.P., & Alam, N.M. (2012). Leaf litter decomposition and nutrient dynamics in four multipurpose tree species. Range Management and Agroforestry33(1), 20-27.
Krause, A., Pugh, T.A., Bayer, A.D., Li, W., Leung, F., Bondeau, A., Doelman, J.C., Humpenöder, F., Anthoni, P., Bodirsky, B.L., & Ciais, P. (2018). Large uncertainty in carbon uptake potential of land‐based climate‐change mitigation efforts. Global Change Biology24(7), 3025-3038. DOI: 10.1111/gcb.14144
Laganiere, J., Angers, D.A., & Pare, D. (2010). Carbon accumulation in agricultural soils after afforestation: a meta‐analysis. Global change biology16(1), 439-453.
Leuschner, C., Wulf, M., Bäuchler, P., & Hertel, D. (2014). Forest continuity as a key determinant of soil carbon and nutrient storage in beech forests on sandy soils in Northern Germany. Ecosystems17(3), 497-511. DOI: 10.1007/s10021-013-9738-0 
Li, D., Niu, S., & Luo, Y. (2012). Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta‐analysis. New Phytologist195(1), 172-181. DOI: 10.1111/j.1469-8137.2012.04150.x
Li, T., Gao, J., Hong, J., Xie, Y., Gao, Z., Meng, H., ... & Meng, L. (2018). Variation of nutrients and selected soil properties in reclaimed soil of different ages at a coal-mining subsidence area on the Loess Plateau, China. Ekoloji27(106), 547-554.
Li, X., Yi, M.J., Son, Y., Park, P.S., Lee, K.H., Son, Y.M., ... & Jeong, M.J. (2011). Biomass and carbon storage in an age-sequence of Korean pine (Pinus koraiensis) plantation forests in central Korea. Journal of Plant Biology54(1), 33-42. DOI: 10.1007/s12374-010-9140-9
Liang, B., Wang, J., Zhang, Z., Zhang, J., Zhang, J., Cressey, E.L., & Wang, Z. (2022). Planted forest is catching up with natural forest in China in terms of carbon density and carbon storage. Fundamental Research. 2(5), 688-696. DOI: 10.1016/j.fmre.2022.04.008
Liao, C., Luo, Y., Fang, C., Chen, J., & Li, B. (2012). The effects of plantation practice on soil properties based on the comparison between natural and planted forests: a meta‐analysis. Global ecology and biogeography21(3), 318-327. DOI: 10.1111/j.1466-8238.2011.00690.x
Lin, C.Y., Wang, S.M., Wu, S.W., Tseng, C.W., & Chen, T.Y. (2022). Environmental indicators combined with conceptual models to assess the spatial distribution of carbon storages in the Liukui Experimental Forest in southern Taiwan. Ecological Indicators137, 108724. DOI: 10.1016/j.ecolind.2022.108724
Malchair, S., & Carnol, M. (2009). Microbial biomass and C and N transformations in forest floors under European beech, sessile oak, Norway spruce and Douglas-fir at four temperate forest sites. Soil Biology and Biochemistry41(4), 831-839. DOI: 10.1016/j.soilbio.2009.02.004
Matali, S., & Metali, F. (2015). Selected soil physico-chemical properties in the Acacia mangium plantation and the adjacent heath forest at Andulau Forest Reserve. Malaysian Journal of Soil Science19, 45-48.
Montfort, F., Nourtier, M., Grinand, C., Maneau, S., Mercier, C., Roelens, J.B., & Blanc, L. (2021). Regeneration capacities of woody species biodiversity and soil properties in Miombo woodland after slash-and-burn agriculture in Mozambique. Forest Ecology and Management488, 119039. DOI: 10.1016/j.foreco.2021.119039
Naghdi, R., Mirzaei, M., Maghajani, A.H., & Torkaman, J. (2021). Estimation stock and economic value of carbon storage of root and stump of Populus deltoids in poplar plantation of Guilan province. Iranian Journal of Forest, 13(2), 197-208. DOI: 10.22034/IJF.2021.274498.1765 (In Persian)
Nazeri, A., Jusoh, I., & Wasli, M. E. (2022). Soil Physicochemical Properties in Different Stand Ages And. Journal of Sustainability Science and Management17(3), 173-187. DOI: 10.46754/jssm2022.03.01
Noraiy, A., Jalilvand, H., Hojjati, S.M., & Alavi, S.J. (2021). Comparison Changes of Chemical Elements of Throughfall and Litterfall In Oak (Quercus Castaneifolia Ca Mey) And Pine (Pinus Radiata D. Don) Plantations. Forest And Wood Products74(1), 1-14. DOI: 10.22059/JFWP.2021.300521.1094 (In Persian)
Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Shvidenko, A., Lewis, S.L., Canadell, J.G., & Ciais, P. (2011). A large and persistent carbon sink in the world’s forests. science333(6045), 988-993. DOI: 10.1126/science.1201609
Peichl, M., & Arain, M.A. (2006). Above-and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Agricultural and Forest Meteorology140(1-4), 51-63.
Perumal, M., Wasli, M. E., Ying, H. S., Lat, J., & Sani, H. (2015). Soil morphological and physicochemical properties at reforestation sites after enrichment planting of Shorea macrophylla in Sampadi Forest Reserve, Sarawak, Malaysia. Borneo Journal of Resource Science and Technology5(2), 28-43. DOI: https://doi.org/10.33736/bjrst.220.2015
Pilehvar, B., Jafari, S.H., & Mirazadi, Z. (2016). Soil Carbon Sequestration Compression in Plantations with Different Species in Makhmalkooh Forest Park. Journal of Plant research. 29(4), 717-727. (In Persian)
Puttaso, P., Kaewjampa, N., & Lawongsa, P. (2016). Carbon stock assessment under different ages of rubber tree plantation. Asia-Pacific Journal of Science and Technology21(4), 1-7. DOI: 10.14456/apst.2016.12
Richter, D.D., Markewitz, D., Wells, C.G., Allen, H.L., Dunscomb, J., Harrison, K., Heine, P.R., Stuanes, A., Urrego, B., & Bonani, G. (1995). Carbon cycling in an old-field pine forest: implications for the missing carbon sink and for the fundamental concept of soil. Carbon Forms and Functions in Forest Soils. SSSA Publishers, Madison, WI, 233-253.
Sabeti, H. (1994). Trees and shrubs of Iran. Yazd University Publication, Yazd, Iran, 876p. (In Persian)
Schimel, D.S., House, J.I., Hibbard, K.A., Bousquet, P., Ciais, P., Peylin, P., Braswell, B.H., Apps, M.J., Baker, D., Bondeau, A., & Canadell, J. (2001). Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature414(6860), 169-172.
Sutinen, R., Panttaja, M., Teirila, A., & Sutinen, M. L. (2006). Effect of mechanical site preparation on soil quality in former Norway spruce sites. Geoderma136(1-2), 411-422. DOI: 10.1016/j.geoderma.2006.04.018
Tei, S., & Sugimoto, A. (2018). Time lag and negative responses of forest greenness and tree growth to warming over circumboreal forests. Global change biology24(9), 4225-4237. DOI: 10.1111/gcb.14135
Turvey, N.D. (1996). Growth at age 30 months of Acacia and Eucalyptus species planted in Imperata grasslands in Kalimantan Selatan, Indonesia. Forest ecology and management82(1-3), 185-195.
Updegraff, K., Baughman, M.J., & Taff, S.J. (2004). Environmental benefits of cropland conversion to hybrid poplar: economic and policy considerations. Biomass and bioenergy27(5), 411-428.
USDA. (2001). Soil quality test kit guide. Washington, D.C: USDA Soil Quality Institute, p. 79.
Wong, V.N., Dalal, R.C., & Greene, R.S. (2008). Salinity and sodicity effects on respiration and microbial biomass of soil. Biology and fertility of soils44(7), 943-953. DOI: 10.1007/s00374-008-0279-1
Yamashita, N., Ohta, S., & Hardjono, A. (2008). Soil changes induced by Acacia mangium plantation establishment: comparison with secondary forest and Imperata cylindrica grassland soils in South Sumatra, Indonesia. Forest Ecology and Management254(2), 362-370. DOI: 10.1016/j.foreco.2007.08.012
Yang, H.X., Wang, S.L., Fan, B., Zhang, W.D., & Wei, C. E. (2010). Dynamics of nutrients in an age sequence of Pinus massoniana plantation. Yingyong Shengtai Xuebao21(8). 1907-1914.
Yang, X. M., Xie, H. T., Drury, C.F., Reynolds, W.D., Yang, J.Y., & Zhang, X.D. (2012). Determination of organic carbon and nitrogen in particulate organic matter and particle size fractions of Brookston clay loam soil using infrared spectroscopy. European Journal of Soil Science63(2), 177-188. DOI: 10.1111/j.1365-2389.2011.01421.x
Yang, Y., Liu, B.R., & An, S.S. (2018). Ecological stoichiometry in leaves, roots, litters and soil among different plant communities in a desertified region of Northern China. Catena166, 328-338. DOI: 10.1016/j.catena.2018.04.018
Yesilonis, I., Szlavecz, K., Pouyat, R., Whigham, D., & Xia, L. (2016). Historical land use and stand age effects on forest soil properties in the Mid-Atlantic US. Forest Ecology and Management370, 83-92. DOI: 10.1016/j.foreco.2016.03.046
Yin, X., Zhao, L., Fang, Q., & Ding, G. (2021). Differences in soil physicochemical properties in different-aged pinus massoniana plantations in Southwest China. Forests12(8), 987. DOI: 10.3390/f12080987
Zeng, X., Zhang, W., Cao, J., Liu, X., Shen, H., & Zhao, X. (2014). Changes in soil organic carbon, nitrogen, phosphorus, and bulk density after afforestation of the “Beijing–Tianjin Sandstorm Source Control” program in China. Catena118, 186-194. DOI: 10.1007/s11707-016-0589-9
Zhang, X., Zhang, X., Han, H., Shi, Z., & Yang, X. (2019). Biomass accumulation and carbon sequestration in an age-sequence of Mongolian pine plantations in Horqin sandy land, China. Forests10(2), 197. DOI: 10.3390/f10020197
Zhang, Z., Huang, X., & Zhou, Y. (2020). Spatial heterogeneity of soil organic carbon in a karst region under different land use patterns. Ecosphere11(3), e03077. DOI: 10.1002/ecs2.3077