بررسی قابلیت داده‌های تک‌قطبشی TanDEM-X در برآورد ارتفاع تاج‌پوشش جنگل‌های هیرکانی (مطالعۀ موردی: جنگل شصت‌کلاته)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموختۀ کارشناسی ارشد جنگلداری، دانشکدۀ علوم جنگل، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان

2 استاد گروه جنگلداری، دانشکدۀ علوم جنگل، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان

3 استادیار گروه جنگلداری، دانشکدۀ علوم جنگل، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان

4 استادیار گروه علوم اطلاعات جغرافیایی و رصد زمین، دانشکدۀ علوم رصد زمین، دانشگاه توئنته، هلند

10.22034/ijf.2023.367017.1905

چکیده

در این پژوهش، قابلیت داده‌های راداری تک‌قطبشی ماهوارۀ TanDEM-X در برآورد ارتفاع تاج‌پوشش جنگل‌های هیرکانی بررسی شد. دو رویکرد تداخل‌سنجی تفاضلی با به‌کارگیری مدل رقومی زمین حاصل از داده‌های لیدار هوابرد و مدل Sinc حاصل ساده‌سازی مدل پراکنش حجمی نامنظم روی سطح Random Volume over Ground (RVoG) مقایسه شد. منطقۀ پژوهش در بخشی از طرح جنگلداری دکتر بهرام‌نیای گرگان (شصت‌کلاته) واقع شده است. آمار زمینی 308 قطعه نمونۀ دایره‌ای به مساحت 1/0 هکتار برای ارزیابی دقت رویکردهای استفاده‌شده در برآورد ارتفاع تاج‌پوشش به‌کار گرفته شد. به ‌این منظور میانگین ارتفاع لوری در محل قطعات نمونه محاسبه شد. دامنۀ همدوسی برای برآورد ارتفاع تاج‌پوشش با استفاده از مدل Sinc به‌کار برده شد و با حذف اثر توپوگرافی از فاز رفع ابهام‌شده که با فاز حاصل از زمین در مناطق باز تطبیق یافته بود، ارتفاع تاج‌پوشش به روش تداخل‌سنجی تفاضلی به‌دست آمد. پس از تصحیح هندسی تصاویر، میانگین ارتفاع تاج‌پوشش برآوردی در محل قطعات نمونه استخراج شد. نتایج ارزیابی مستقیم ارتفاع تاج‌پوشش برآوردی نسبت به واقعیت زمینی نشان داد که رویکرد تداخل‌سنجی تفاضلی نسبت به مدل Sinc با مقادیر مجذور میانگین مربعات خطای مطلق RMSE و نسبی rRMSE به‌ترتیب 86/2 متر و 28/12 درصد و ضریب تبیین 33/0 از دقت بیشتری برخوردار است. این درحالی است که نتایج قابل مقایسه‌ای با استفاده از مدل Sinc به‌دست آمد (m41/3 RMSE = و 64/14% rRMSE =). به‌طور کلی تحقیق حاضر پتانسیل نسبی داده‌های با طول موج کوتاه TanDEM-X و مدل‌های مبتنی بر همدوسی را به‌منظور برآورد ارتفاع تاج‌پوشش جنگل‌های هیرکانی در سطح وسیع نشان می‌دهد، اگرچه تنها 15 درصد از تغییرات میانگین ارتفاع لوری به‌وسیلۀ مدل Sinc بیان شد. از این‌رو پژوهش‌های بیشتری برای درک عوامل تأثیرگذار بر صحت نتایج از جمله نوع گونه، شیب و مشخصه‌های برداشت تصویر ضروری به نظر می‌رسد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Feasibility of single-polarized TanDEM-X data for Hyrcanian forest height estimation (Case study: Shast-Kalateh forest)

نویسندگان [English]

  • M Poorazimy 1
  • Sh Shataee Jouibary 2
  • ,J. Mohammadi 3
  • H Aghababaei 4
1 MSc., Dept. of Forestry, Gorgan University of Agricultural Science and Natural Resources, I. R. Iran
2 Prof., Dept. of Forestry, Gorgan University of Agricultural Science and Natural Resources, I. R. Iran
3 Assistant Prof., Dept. of Forestry, Gorgan University of Agricultural Science and Natural Resources, I. R. Iran
4 Assistant Prof., Dept. of Earth Observation Science, University of Twente, N. L. Netherland
چکیده [English]

In this study, the capability of single-polarized TanDEM-X data was assessed for estimating the Hyrcanian forest height. Two approaches of Sinc interferometric coherence model based on Random Volume over Ground (RVoG) and differential interferometry utilizing airborne LiDAR-derived DTM were compared. The study was conducted in part of Dr. Bahram Nia’s forest management plan (Shast-Kalateh). 308 circular sample plots with an area of 0.1 ha were used in evaluating the accuracy of predicted forest height using two different approaches. For this reason, Lorey’s mean tree height weighted by basal area was calculated. The interferometric coherency was involved in the Sinc function for inverting forest height. We also removed topography from the SAR phase calibrated with LiDAR-derived DTM on open areas for estimating forest height based on differential interferometry. After terrain correction, the average predicted canopy height was extracted for each plot. Our results showed higher accuracy of differential interferometry than the Sinc model in forest height estimation when compared with ground reference data (RMSE=2.86 m and rRMSE=12.28%). Although, the accuracy of estimated forest height by the Sinc model was comparable with RMSE=3.41 m and rRMSE=14.46%. We found TanDEM-X data and coherence-based models a relatively promising approach in the Hyrcanian forest even though only 15% of Lorey’s men height change was explained by the Sinc model. Hence, further studies are needed to figure out the effects of species, slope, and image aquisition features on the results.

کلیدواژه‌ها [English]

  • : Lorey’s height
  • Interferometry
  • RVoG model
  • Sinc model. Coherency
Abdullahi, S., Kugler, F., & Pretzsch, H. (2016). Prediction of stem volume in complex temperate forest stands using TanDEM-X SAR data. Remote Sensing of Environment174, 197–211. https://doi.org/10.1016/j.rse.2015.12.012
Askne, J.I., & Santoro, M. (2014). On the estimation of boreal forest biomass from TanDEM-X data without training samples. IEEE Geoscience and Remote Sensing Letters12(4), 771–775. DOI: 10.1109/LGRS.2014.2361393
Caicoya, A.T., Kugler, F., Hajnsek, I., & Papathanassiou, K. (2012). Boreal forest biomass classification with TanDEM-X. In 2012 IEEE. international geoscience and remote sensing symposium, IEEE, 3439-3442. DOI: 10.1109/IGARSS.2012.6350681
Chen, W., Zheng, Q., Xiang, H., Chen, X., & Sakai, T. (2021). Forest Canopy Height Estimation Using Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) Technology Based on Full-Polarized ALOS/PALSAR Data. Remote Sensing, 13(2), 174. https://doi.org/10.3390/rs13020174
Cloude, S.R., Chen, H., & Goodenough, D. G. (2013). Forest height estimation and validation using Tandem-X polinsar. In 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS, IEEE, 1889-1892. DOI: 10.1109/IGARSS.2013.6723172
Cloude, S.R. (2010). Polarization: Applications in Remote Sensing, Oxford University Press: New York, NY, USA.
Darvishsefat, A.A., Arjhangi Choobar, R., Bonyad, A.E., & Ronoud, G. (2016). Mapping the poplar plantations using Landsat-8 data (Case Study: Talesh and Sumehsara region, Guilan province). Iranian Journal of Forest, 8(3), 301-312 (In Persian).
David, R.M., Rosser, N.J., & Donoghue, D.N. (2022). Improving above ground biomass estimates of Southern Africa dryland forests by combining Sentinel-1 SAR and Sentinel-2 multispectral imagery. Remote Sensing of Environment, 282, 113232. https://doi.org/10.1016/j.rse.2022.113232
Erasmi, S., Semmler, M., Schall, P., & Schlund, M. (2019). Sensitivity of bistatic TanDEM-X data to stand structural parameters in temperate forests. Remote Sensing, 11(24), 2966. https://doi.org/10.3390/rs11242966
Gómez, C., Lopez-Sanchez, J.M., Romero-Puig, N., Zhu, J., Fu, H., He, W., Xie, Y., & Xie, Q. (2021). Canopy Height Estimation in Mediterranean Forests of Spain with TanDEM-X Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 2956-2970. DOI: 10.1109/JSTARS.2021.3060691
Hajnsek, I., Kugler, F., Lee, S.K., & Papathanassiou, K. P. (2009). Tropical-forest-parameter estimation by means of Pol-InSAR: The INDREX-II campaign. IEEE transactions on Geoscience and Remote Sensing47(2), 481–493. DOI: 10.1109/TGRS.2008.2009437
Kargar, M.R., & Sohrabi, H. (2019). Using canopy height model derived from UAV images to tree height estimation in Sisangan forest. Journal of RS and GIS for Natural Resources10(3), 106-119 (In Persian).
Khati, U., Singh, G., & Ferro-Famil, L. (2017). Analysis of seasonal effects on forest parameter estimation of Indian deciduous forest using TerraSAR-X PolInSAR acquisitions. Remote Sensing of Environment199, 265–276. https://doi.org/10.1016/j.rse.2017.07.019
Kugler, F., Schulze, D., Hajnsek, I., Pretzsch, H., & Papathanassiou, K.P. (2014). TanDEM-X Pol-InSAR performance for forest height estimation. IEEE Transactions on Geoscience and Remote Sensing52(10), 6404-6422. DOI: 10.1109/TGRS.2013.2296533
Lee, S.K., & Fatoyinbo, T.E. (2015). TanDEM-X Pol-InSAR inversion for mangrove canopy height estimation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing8(7), 3608-3618. DOI: 10.1109/JSTARS.2015.2431646
Lu, D., Chen, Q., Wang, G., Liu, L., Li, G., & Moran, E. (2016). A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth9(1), 63–105. https://doi.org/10.1080/17538947.2014.990526
Loh, H.Y., James, D., Ioki, K., Wong, W.V.C., Tsuyuki, S., & Phua, M.H. (2022). Estimating aboveground biomass changes in a human-modified tropical montane forest of Borneo using multi-temporal airborne LiDAR data. Remote Sensing Applications: Society and Environment, 28, 100821. https://doi.org/10.1016/j.rsase.2022.100821
Maghsoudi, Y., & Mahdavi, S. (2015). The principle of Radar Remote Sensing. K.N.Toosi University of Technology Press, Tehran, 290p (In Persian).
Miri, N., Darvishsefat, A.A., Zargham, N., & Shakeri, Z. (2017). Estimation of leaf area index in Zagros forests using Landsat 8 data. Iranian Journal of Forest, 9(1), 29-42.
Mohammadi, J. (2012). Improving in Estimation of Some Forest Structure Quantitative Characteristics by Combining the Lidar and Digital Aerial Images in Shast Kalate Hardwood Forests of Gorgan. A thesis of PhD student. Gorgan University of agriculture Science and natural resources, 287p (In Persian).
Nabuurs, G.J., Masera, O., Andrasko, K., Benitez-Ponce, P., Boer, R., Dutschke, M., Elsiddig, E., Ford-Robertson, J., Frumhoff, P., Karjalainen, T., & Krankina, O. (2007). IPCC forestry. Climate change, 541-584.
Namiranian, M. (2006), "Measurement of the tree and forest biometry", University of Tehran Press: Tehran,, 594p. (In Persian)
Olesk, A., Praks, J., Antropov, O., Zalite, K., Arumäe, T., & Voormansik, K. (2016). Interferometric SAR coherence models for characterization of hemiboreal forests using TanDEM-X data. Remote Sensing, 8(9), 700. https://doi.org/10.3390/rs8090700
Olesk, A., Voormansik, K., Vain, A., Noorma, M., & Praks, J. (2015). Seasonal differences in forest height estimation from interferometric TanDEM-X coherence data, IEEE. Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(12), 5565-5572. DOI: 10.1109/JSTARS.2015.2501648
Papathanassiou, K.P., & Cloude, S.R. (2001). Single-baseline polarimetric SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(11), 2352-2363. DOI: 10.1109/36.964971
Poorazimy, M., Shataee, S., Attarchi, S., & Mohammadi, J. (2017). Estimation of aboveground biomass using Alos-Palsar data in Hyrcanian forests (Case study: ShastKalateh, Gorgan). Forest and Wood Products, 70(3), 479-488 (In Persian).
Poorazimy, M., Shataee, S., McRoberts, R.E., & Mohammadi, J. (2020). Integrating airborne laser scanning data, space-borne radar data and digital aerial imagery to estimate aboveground carbon stock in Hyrcanian forests, Iran. Remote Sensing of Environment, 240, 111669. https://doi.org/10.1016/j.rse.2020.111669
Praks, J., Antropov, O., & Hallikainen, M.T. (2012). LIDAR-aided SAR interferometry studies in boreal forest: Scattering phase center and extinction coefficient at X-and L-band. IEEE transactions on geoscience and remote sensing50(10), 3831–3843. DOI: 10.1109/TGRS.2012.2185803
Ronoud, G., Fatehi, P., Darvishsefat, A.A., Tomppo, E., Praks, J., & Schaepman, M.E. (2021). Multi-sensor aboveground biomass estimation in the broadleaved Hyrcanian forest of Iran. Canadian journal of remote sensing47(6), 818–834. https://doi.org/10.1080/07038992.2021.1968811
Ronoud, G., Darvishsefat, A.A., Schaepman, M.E., Namiranian, M., & Maghsoudi, Y. (2022). Woody Aboveground Biomass Estimation using Radar Data in the mixed Hyrcanian Forest (Case Study: Khayroud Forest of Nowshahr, Mazandaran). Iranian Journal of Forest, 14(3), 257-274 (In Persian). DOI: 10.22034/IJF.2022.310971.1808
Schlund, M., Erasmi, S., & Scipal, K. (2019). Comparison of Aboveground Biomass Estimation From InSAR and LiDAR Canopy Height Models in Tropical Forests. IEEE Geoscience and Remote Sensing Letters, 17(3), 367-371. DOI: 10.1109/LGRS.2019.2925901
Schlund, M., von Poncet, F., Hoekman, D.H., Kuntz, S., & Schmullius, C. (2014). Importance of bistatic SAR features from TanDEM-X for forest mapping and monitoring. Remote Sensing of Environment151, 16–26. https://doi.org/10.1016/j.rse.2013.08.024
Schlund, M., von Poncet, F., Kuntz, S., Schmullius, C., & Hoekman, D.H. (2015). TanDEM-X data for aboveground biomass retrieval in a tropical peat swamp forest. Remote Sensing of Environment158, 255–266. https://doi.org/10.1016/j.rse.2014.11.016
Sharifi Hashjin, Sh., & Khazaei, S. (2013). Impact of the Environmental Parameters on Tree Height Estimation Using Polarimetric Interferometry Synthetic Aperture Radar Techniques. Passive Defence Science and Technology4(2), 137-144.
Small, D., & Schubert, A. (2008). Guide to ASAR Geocoding. ESA-ESRIN Technical Note RSL-ASAR-GC-AD.   (Report No. 1). Switzerland: University of Zurich.
Silveira, E.M., Radeloff, V.C., Martinuzzi, S., Pastur, G.J.M., Bono, J., Politi, N., ... & Pidgeon, A. M. (2023). Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagery. Remote Sensing of Environment, 285, 113391. https://doi.org/10.1016/j.rse.2022.113391
Sinha, S., Jeganathan, C., Sharma, L.K., & Nathawat, M.S. (2015). A review of radar remote sensing for biomass estimation. International Journal of Environmental Science and Technology, 12(5), 1779-1792. DOI: 10.1007/s13762-015-0750-0
Solberg, S., Astrup, R., Breidenbach, J., Nilsen, B., & Weydahl, D. (2013). Monitoring spruce volume and biomass with InSAR data from TanDEM-X. Remote sensing of Environment139, 60-67. https://doi.org/10.1016/j.rse.2013.07.036
Solberg, S., Astrup, R., Gobakken, T., Næsset, E., & Weydahl, D. J. (2010). Estimating spruce and pine biomass with interferometric X-band SAR. Remote Sensing of Environment114(10), 2353–2360. https://doi.org/10.1016/j.rse.2010.05.011
Solberg, S., May, J., Bogren, W., Breidenbach, J., Torp, T., & Gizachew, B. (2018). Interferometric SAR DEMs for forest change in Uganda 2000–2012. Remote Sensing10(2), 228. https://doi.org/10.3390/rs10020228
Solberg, S., Næsset, E., Gobakken, T., & Bollandsås, O.M. (2014). Forest biomass change estimated from height change in interferometric SAR height models. Carbon Balance and Management, 9(1), 1–12. DOI:10.1186/s13021-014-0005-2
Tian, X., Su, Z., Chen, E., Li, Z., van der Tol, C., Guo, J., & He, Q. (2012). Estimation of forest aboveground biomass using multi-parameter remote sensing data over a cold and arid area. International Journal of Applied Earth Observation and Geoinformation, 17, 102-110. https://doi.org/10.1016/j.jag.2012.03.007
Tsui, O.W., Coops, N.C., Wulder, M.A., Marshall, P.L., & Mc Cardle, A. (2012). Using multi-frequency radar and discrete-return LiDAR measurements to estimate aboveground biomass and biomass components in a coastal temperate forest. ISPRS Journal of Photogrammetry and Remote Sensing, 69, 121–133. https://doi.org/10.1016/j.isprsjprs.2012.02.009
Zahriban, M. (2020). Forest height Estimations Using TanDEM-X Data in Hyrcanian Forests. A thesis of PhD student. Gorgan University of agriculture Science and natural resources (In Persian).