Woody Aboveground Biomass Estimation using Radar Data in the mixed Hyrcanian Forest (Case Study: Khayroud Forest of Nowshahr, Mazandaran)

Document Type : Research Paper

Authors

1 Ph.D. student, University of Tehran, Dept. of Forestry and Forest Economics, Faculty of Natural Resources, Karaj, I. R.Iran

2 Prof., University of Tehran, Dept. of Forestry and Forest Economics, Faculty of Natural Resources, Karaj, I. R. Iran

3 Prof., University of Zurich, Remote Sensing Laboratories, Winterthurerstrasse190, 8057 Zurich, Switzerland

4 Assistant Prof., Khajeh Nasir Toosi University, Faculty of Surveying Engineering, Tehran, I. R. Iran

10.22034/ijf.2022.310971.1808

Abstract

This study investigates the capability of ALOS-2 full polarimetric radar data for estimating woody aboveground biomass (AGB) in a mixed Hyrcanian forest. For collecting ground data, the low slope areas selected and measured for a total of 127 square sample plots with an area of 900-m2. Tree height and Diameter at Breast Height (DBH) were measured for each tree with DBH of larger than 7.5-cm and the volume of each tree was calculated using these two characteristics. We used volume to biomass equation (multiplying the volume by the wood-critical density) to calculate AGB in each sample plot. The average of observed AGB was 318.04-tons per hectare for the study area. To process ALOS-2 data, the polarization channels were calibrated and multi-looked. We used a Box-Car filter with window size of 5×5 pixels to reduce the noise. Finally, the extracted features were geometrically corrected. They are Backscattering intensity components in the form of gamma naught, Freeman-Durden target decompositions components and variables derived from mathematical relationships betw

Keywords


 
Amini, J., & Sumantyo, J.T.S. (2009). Employing a method on SAR and optical images for forest biomass estimation. IEEE Transactions on Geoscience and Remote Sensing47(12), 4020-4026.
Behera, M.D., Tripathi, P., Mishra, B., Kumar, S., Chitale, V.S., & Behera, S. K. (2016). Above-ground biomass and carbon estimates of Shorea robusta and Tectona grandis forests using QuadPOL ALOS PALSAR data. Advances in Space Research, 57(2), 552-561.
Bharadwaj, P.S., Kumar, S., Kushwaha, S.P.S., & Bijker, W. (2015). Polarimetric scattering model for estimation of above ground biomass of multilayer vegetation using ALOS-PALSAR quad-pol data. Physics and Chemistry of the Earth, Parts A/B/C83, 187-195.
Bispo, P.C., Santos, J.R., Valeriano, M.M., Touzi, R., & Seifert, F.M. (2014). Integration of polarimetric PALSAR attributes and local geomorphometric variables derived from SRTM for forest biomass modeling in central Amazonia. Canadian Journal of Remote Sensing40(1), 26-42.
Brown, S., & Lugo, A.E. (1984). Biomass of tropical forests: a new estimate based on forest volumes. Science, 223(4642), 1290-1293.
Cassol, H.L.G., Carreiras, J.M.D.B., Moraes, E.C., Silva, C.V.D.J., Quegan, S., & Shimabukuro, Y.E. (2019). Retrieving secondary forest aboveground biomass from polarimetric ALOS-2 PALSAR-2 data in the Brazilian Amazon. Remote Sensing, 11(1), 59.
Chen, W., Zheng, Q., Xiang, H., Chen, X., & Sakai, T. (2021). Forest canopy height estimation using polarimetric interferometric synthetic aperture radar (PolInSAR) technology based on full-polarized ALOS/PALSAR data. Remote Sensing, 13(2), 174.
Chrysafis, I., Mallinis, G., Siachalou, S., & Patias, P. (2017). Assessing the relationships between growing stock volume and Sentinel-2 imagery in a Mediterranean forest ecosystem. Remote Sensing Letters8(6), 508-517.
Darvishsefat, A., Miri, N., Shakeri, Z., & Zargham, N. (2017). Estimation of leaf area index in Zagros forests using Landsat 8 data. Iranian Journal of Forest, 9(1), 29-42.
Enayati, A.A. )2011(. Wood Physics. Tehran: University of Tehran Press.
Erasmi, S., Semmler, M., Schall, P., & Schlund, M. (2019). Sensitivity of bistatic TanDEM-X data to stand structural parameters in temperate forests. Remote Sensing, 11(24), 2966.
Fazelian, M., Attarchi, S., Etemad, V., & Lisenberg, V. (2020). Forest biomass estimation using optical and microwave imagery (Case study: Garazbon Series, Kheirud Forest). Iranian Journal of Forest, 12(3), 391-405.
Fransson, J.E., Santoro, M., Wallerman, J., Persson, H.J., Monteith, A.R., Eriksson, L.E., & Ulander, L.M. (2016). Estimation of forest stem volume using ALOS-2 PALSAR-2 satellite images. In 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 5327-5330.
Freeman, A., & Durden, S.L. (1998). A three-component scattering model for polarimetric SAR data. IEEE Transactions on Geoscience and Remote Sensing, 36(3), 963-973.
Ghasemi, N., Sahebi, M.R., & Mohammadzadeh, A. (2012). Biomass estimation of a temperate deciduous forest using wavelet analysis. IEEE Transactions on Geoscience and Remote Sensing51(2), 765-776.
Ghosh, S.M., & Behera, M.D. (2018). Aboveground biomass estimation using multi-sensor data synergy and machine learning algorithms in a dense tropical forest. Applied Geography96, 29-40.
Hernández-Stefanoni, J.L., Castillo-Santiago, M.Á., Mas, J.F., Wheeler, C.E., Andres-Mauricio, J., Tun-Dzul, F., George-Chacón, S.P., Reyes-Palomeque, G., Castellanos-Basto, B., Vaca, R., & Dupuy, J.M. (2020). Improving aboveground biomass maps of tropical dry forests by integrating LiDAR, ALOS PALSAR, climate and field data. Carbon Balance and Management, 15(1), 1-17.
Li, W., Chen, E., Li, Z., Zhang, W., & Jiang, C. (2016). Assessing performance of tomo-sar and backscattering coefficient for hemi-boreal forest aboveground biomass estimation. Journal of the Indian Society of Remote Sensing, 44(1), 41-48.
Li, Y., Li, C., Li, M., & Liu, Z. (2019). Influence of variable selection and forest type on forest aboveground biomass estimation using machine learning algorithms. forests, 10(12), 1073.
Lu, D., Chen, Q., Wang, G., Liu, L., Li, G., & Moran, E. (2016). A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth9(1), 63-105.
Ma, J., Xiao, X., Qin, Y., Chen, B., Hu, Y., Li, X., & Zhao, B. (2017). Estimating aboveground biomass of broadleaf, needleleaf, and mixed forests in Northeastern China through analysis of 25-m ALOS/PALSAR mosaic data. Forest Ecology and Management389, 199-210.
Maghsodi, Y., & Mahdavi, S. (2015). The principle of Radar Remote Sensing. Tehran: Khaje Nasir Toosi University of Technology Press.
McNeill, S., & Pairman, D. (2005). Stand age retrieval in production forest stands in New Zealand using C-and L-band polarimetric radar. IEEE Transactions on Geoscience and Remote Sensing, 43(11), 2503-2515.
Mohammadi, J., Shataee, S., Namiranian, M., & Næsset, E. (2017). Modeling biophysical properties of broad-leaved stands in the hyrcanian forests of Iran using fused airborne laser scanner data and ultraCam-D images. International Journal of Applied Earth Observation and Geoinformation61, 32-45.
Moradi, F., Darvishsefat, A.A., Namiranian, M., & Ronoud, G. (2018). Investigating the capability of Landsat 8 OLI data for estimation of aboveground woody biomass of common hornbeam (Carpinus betulus L.) stands in Khyroud Forest. Iranian Journal of Forest and Poplar Research26(3), 406-420.
Namiranian, M. (2006), Measurement of the tree and forest biometry. Tehran. University of Tehran Press.
Nasiri, V., Darvishsefat, A.A., Arefi, H., & Namiranian, M. (2020). Estimating Mean Tree Crown Diameter using UAV Imagery Based on Multi Resolution and Watershed Segmentation Methods (Case study: Kheyrud Forest). Iranian Journal of Forest, 12(1), 131-145.
Nouri, A., Shataee, S., & Mohammadi, J. (2019). Capability of Alos-Palsar-2 radar quad polarization data for estimation of structural quantitative characteristics of planted forest, Arabdagh region, Iran. Iranian Journal of Forest and Poplar Research, 27(4), 451-463.
Pandit, S., Tsuyuki, S., & Dube, T. (2018). Estimating above-ground biomass in sub-tropical buffer zone community forests, Nepal, using Sentinel 2 data. Remote Sensing10(4), 601.
Poorazimy, M., Shataee, S., Attarchi, S., & Mohammadi, J. (2017). Estimation of aboveground biomass using Alos-Palsar data in Hyrcanian forests (Case study: ShastKalateh, Gorgan). Forest and Wood Products70(3), 479-488.
Poorazimy, M., Shataee, S., McRoberts, R.E., & Mohammadi, J. (2020). Integrating airborne laser scanning data, space-borne radar data and digital aerial imagery to estimate aboveground carbon stock in Hyrcanian forests, Iran. Remote Sensing of Environment240, 111669.
Ronoud, G., & Darvishsefat, A.A. (2018). Estimating aboveground woody biomass of Fagus orientalis stands in Hyrcanian forest of Iran using Landsat 5 satellite data (Case study: Khyroud Forest). Geographic Space17(60), 117-129.
Ronoud, G., Darvishsefat, A.A., & Namiranian, M. (2017). Estimation of aboveground woody biomass of Fagus orientalis stands in Hyrcanian forest of Iran using OLI data (Case study: Gorazbon and Namkhaneh Districts, Kheyrud Forest). Forest and Wood Products70(4), 559-568.
Ronoud, G., Fatehi, P., Darvishsefat, A.A., Tomppo, E., Praks, J., & Schaepman, M.E. (2021). Multi-Sensor Aboveground Biomass Estimation in the Broadleaved Hyrcanian Forest of Iran. Canadian Journal of Remote Sensing, 47(6),1-17.
Santoro, M., Eriksson, L.E., & Fransson, J.E. (2015). Reviewing ALOS PALSAR backscatter observations for stem volume retrieval in Swedish forest. Remote Sensing7(4), 4290-4317.
Santos, J.R., Freitas, C.C., Araujo, L.S., Dutra, L.V., Mura, J.C., Gama, F.F., & Sant'Anna, S.J. (2003). Airborne P-band SAR applied to the aboveground biomass studies in the Brazilian tropical rainforest. Remote Sensing of Environment87(4), 482-493.
Sinha, S., Jeganathan, C., Sharma, L.K., & Nathawat, M.S. (2015). A review of radar remote sensing for biomass estimation. International Journal of Environmental Science and Technology, 12(5), 1779-1792.
Tarmian, A., Remond, R., Faezipour, M., Karimi, A., & Perré, P. (2009). Reaction wood drying kinetics: tension wood in Fagus sylvatica and compression wood in Picea abies. Wood Science and Technology43(1-2), 113-130.