تعیین معادلات آلومتریک برای برآورد زی‌تودۀ تنۀ سه گونه کاج بروسیا، کاج بادامی و زربین در توده‌های دست‌کاشت عرب‌داغ استان گلستان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری علوم جنگل- جنگلداری، دانشکدۀ علوم جنگل، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 استادیار، گروه جنگلداری، دانشکدۀ علوم جنگل، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

3 استاد، گروه جنگلداری، دانشکدۀ علوم جنگل، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

چکیده

اندازه‌گیری دقیق زی‌توده و انتخاب مناسب‌ترین معادلات آلومتریک چالش بزرگی در ارزیابی زی‌تودۀ درختان است. بنابراین توسعۀ معادلات آلومتریک برای برآورد دقیق زی‌توده ضروری است. این تحقیق با هدف برآورد زی‌تودۀ تنۀ سه گونۀ سوزنی‌برگ کاج بروسیا، کاج بادامی و زربین در جنگل عرب‌داغ استان گلستان با استفاده از معادلات آلومتریک انجام گرفت. به‌منظور مدل‌سازی زی‌تودۀ تنۀ درختان، سه مشخصۀ اصلی قطر برابرسینه، ارتفاع و چگالی چوب به‌صورت جداگانه و ترکیبی در برازش معادلات به‌کار گرفته شد. نتایج نشان داد که در صورت استفاده از قطر برابرسینه به‌تنهایی برای گونۀ کاج بروسیا، معادلۀ به‌دست‌آمده دارای بیشترین ضریب تبیین (90/0) بود. با اضافه کردن ارتفاع و چگالی چوب به قطر برابرسینه در معادلات آلومتریک زی‌تودۀ تنه ضریب تبیین 9 درصد افزایش و درصد ریشۀ میانگین مربعات خطا 63/12 درصد کاهش یافت. برای گونۀ کاج بادامی، نتایج نشان داد که با اضافه کردن ارتفاع و چگالی چوب به قطر برابرسینه در معادلات آلومتریک زی‌تودۀ تنه، میزان ضریب تبیین و درصد ریشۀ میانگین مربعات خطا بهبود نیافت. برای گونۀ زربین نتایج نشان داد که در صورت استفاده از قطر برابرسینه به‌تنهایی معادلۀ به‌دست‌آمده دارای بیشترین ضریب تبیین (98/0) بود. با اضافه کردن ارتفاع و چگالی چوب به قطر برابرسینه در معادلات آلومتریک زی‌تودۀ تنه میزان ضریب تبیین 1 درصد افزایش و درصد ریشه میانگین مربعات خطا 59/3 درصد کاهش یافت. از معادلات آلومتریک حاصل‌ می‌تواند برای برآورد زی‌تودۀ درختان با این گونه‌ها در شرایط آب‌و‌هوایی و خاک مشابه در مقیاس منطقه‌ای استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Determination of allometric equations for estimating stem biomass of three species of Pinus brutia Ten., Pinus pinea L. and Cupressus sempervirens L. in the Arabdagh reforests, Golestan province

نویسندگان [English]

  • H Ali 1
  • j Mohammadi 2
  • Sh Shataee. Joybary 3
1 Ph.D. Student, Dept. of Forestry, Faculty of Forest Science, Gorgan University of Agricultural Sciences &Natural Resource, Gorgan, I. R. Iran
2 Assistant Prof., Dept. of Forestry, Faculty of Forest Science, Gorgan University of Agricultural Sciences &Natural Resource, Gorgan, I. R. Iran
3 Prof., Dept. of Forestry, Faculty of Forest Science, Gorgan University of Agricultural Sciences &Natural Resource, Gorgan, I. R. Iran
چکیده [English]

Accurate measurements of above-ground biomass and selection of the most appropriate allometric equations are major challenges in evaluating tree biomass. Therefore, the development of allometric equations for each species is essential for accurate above-ground-biomass estimation. This study aimed to estimate the stem biomass of three conifers Pinus brutia, Pinus pinea, and Cupressus sempervirens in Arabdagh reforest using the allometric equations. In order to model the stem biomass, three main characteristics of diameter at breast height (DBH), height (H) and wood density (𝜌), were used separately and in combination to fit the equations. The results of this study showed that if the DBH alone was available for the Pinus brutia, the obtained equation had the highest coefficient of determination (R2) (0.90). By adding H and 𝜌 into DBH in stem allometric equation, the R2 increased by 9% and RMSE % decreased by 12.63%. For Pinus pinea, the results showed that if the DBH was available the obtained equation had the highest R2 (0.99). By adding H and 𝜌 into DBH in stem allometric equation, the R2 and RMSE % values did not improve. The results of Cupressus sempervirens, showed that if the DBH was available the obtained equation had the highest R2 (0.98) and the lowest RMSE% (9.81%). By adding H and 𝜌 into DBH in stem alometric equations, the R2 increased by 1% and RMSE% decreased by 3.59%. The results can be used to estimate the above-ground biomass with these species in similar climate and soil conditions at a local scale. 

کلیدواژه‌ها [English]

  • Allometric equations
  • Stem biomass
  • Diameter at breast height
  • Height
  • Wood density
Alexandre, T., Adamou, I., & Tchobsala, M.L. (2019). Allometric equations for predicting biomass of Daniellia oliveri (Rolfe) Hutch. & Dalz. stands in the Sudano-Guinea Savannahs of Ngaoundere, Cameroon. Ecology and Evolutionary Biology, 4(2), 15-22.
Ali, H., Mohammadi, J., & Shataee, SH. (2020). Determination of form factor for three species (Pinus brutia, Pinus pinea and Cupressus sempervirens) in the Arabdagh reforests, Golestan province. J. of Wood & Forest Science and Technology, 27(1), 31-44.
Andrade, H. J., Segura, M. A., Feria, M. & Suárez, W. (2018). Above-ground biomass models for coffee bushes (Coffea arabica L.) in Líbano, Tolima, Colombia. Agroforestry Systems, 92(3), 775-784.
Balbinot, R., Trautenmüller, J.W., & Caron, B.O., Breunig, F. M., Lambrecht, F. R. & Júnior, S. C. (2017). Trunk biomass estimation by different methods in a Subtropical forest. Floresta, 47(4), 553-560.
Basuki, T.M., Van Laake, P.E., Skidmore, A.K. & Hussin, Y.A. (2009). Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. Forest ecology and management, 257(8), 1684-1694.
Bi, H., Murphy, S., Volkova, L., Weston, C., Fairman, T., Li, Y., & Caccamo, G. (2015). Additive biomass equations based on complete weighing of sample trees for open eucalypt forest species in south-eastern Australia. Forest Ecology and Management, 349, 106-121.
Bronisz, K., Strub, M., Cieszewski, C., Bijak, S., Bronisz, A., Tomusiak, R., & Zasada, M. (2016). Empirical equations for estimating aboveground biomass of Betula pendula growing on former farmland in central Poland. Silva Fennica, 50(4), 1-17.
Canga, E., Aranda, I.D., Khouri, E.A., & Obregon, A.C. (2013). Above-ground biomass equations for Pinus radiata D. Don in Asturias. Forest systems, 22(3), 408-415.
Carnus, J.M., Parrotta, J., Brockerhoff, E., Arbez, M., Jactel, H., Kremer, A., & Walters, B. (2006). Planted forests and biodiversity. Journal of Forestry, 104(2), 65-77.
Charkazi, A.,  Amiri, M., Ravanbakhsh, H., &  Moghadasi, D. (2016). Examination of Quantitative and Qualitative Characteristics of Cupressus Sempervirens Var. Horizontalis and Pinus Brutia in Plantation Forests in the Ramian, Golestan Province. J. of Wood & Forest Science and Technology, 23(4), 1-21.
Chave, J., Andalo, C., Brown, S., Cairns, M.A., Chambers, J.Q., Eamus, D., & Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87-99.
Chave, J., Réjou‐Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M.S., Delitti, W.B., & Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global change biology, 20(10), 3177-3190.
Chen, D., Huang, X., Zhang, S., & Sun, X. (2017). Biomass modeling of larch (Larix spp.) plantations in China based on the mixed model, dummy variable model, and Bayesian hierarchical model. Forests, 8(8), 268.
Correia, A.C., Faias, S.P., Ruiz-Peinado, R., Chianucci, F., Cutini, A., Fontes, L., & Tomé, M. (2018). Generalized biomass equations for Stone pine (Pinus pinea L.) across the Mediterranean basin. Forest Ecology and Management, 429, 425-436.
Cutini, A., Chianucci, F., & Manetti, M.C. (2013). Allometric relationships for volume and biomass for stone pine (Pinus pinea L.) in Italian coastal stands. Iforest-Biogeosciences and Forestry, 6(6), 331.
De-Miguel, S., Pukkala, T., Assaf, N., & Shater, Z. (2014). Intra-specific differences in allometric equations for aboveground biomass of eastern Mediterranean Pinus brutia. Annals of Forest Science,71, 101–112.
Djomo, A.N., Ibrahima, A., Saborowski, J., & Gravenhorst, G. (2010). Allometric equations for biomass estimations in Cameroon and pan moist tropical equations including biomass data from Africa. Forest Ecology and Management, 260(10), 1873-1885.
Dong, L., Zhang, L., & Li, F. (2016). Developing two additive biomass equations for three coniferous plantation species in Northeast China. Forests, 7(7), 136.
Ebuy, J., Lokombe, J.P., Ponette, Q., Sonwa, D., & Picard, N. (2011). Allometric equation for predicting aboveground biomass of three tree species. Journal of Tropical Forest Science, 125-132.
FAO, (2010). Global forest resource assessment. Rome.
Feyisa, K., Beyene, S., Megersa, B., Said, M.Y., & Angassa, A. (2018). Allometric equations for predicting above-ground biomass of selected woody species to estimate carbon in East African rangelands. Agroforestry Systems, 92(3), 599-621.
FRWO, (2019). Forests, Range and Watershed Organization.
Ghandehari, V., Payamnoor, V., & Amiri, M. (2012). Improvement of germination characteristics in Pinuss brutia, P. eldarica and P. pinea by soaking seeds in water. J. of Conservation and Utilization of Natural Resources, 1(1), 35-50.
Hallaj, M.H.S. & Rostaghi, A.A. (2011). Study on growth performance of Turkish pine (case study: Arabdagh afforestation plan, Golestan Province). Iranian Journal of Forest, 3(3), 201-212.
He, H., Zhang, C., Zhao, X., Fousseni, F., Wang, J., Dai, H., & Zuo, Q. (2018). Allometric biomass equations for 12 tree species in coniferous and broadleaved mixed forests, Northeastern China. PloS one, 13(1), 1-16.
Henry, M., Besnard, A., Asante, W.A., Eshun, J., Adu-Bredu, S., Valentini, R., & Saint-André, L. (2010). Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. Forest Ecology and Management, 260(8), 1375-1388.
Henry, M., Picard, N., Trotta, C., Manlay, R., Valentini, R., Bernoux, M., & Saint-André, L. (2011). Estimating tree biomass of sub-Saharan African forests: a review of available allometric equations. Silva Fennica, 45(3), 477-569.
Huy, B., Poudel, K.P., Kralicek, K., Hung, N.D., Khoa, P.V., Phương, V.T., & Temesgen, H. (2016). Allometric equations for estimating tree aboveground biomass in tropical dipterocarp forests of Vietnam. Forests, 7(8), 180.
IPCC, (2014). Supplement to the 2006 IPCC Guidelines for National Green-house Gas Inventories. Intergovernmental Panel on Climate Change (IPCC). Switzerland. Climate change.
Istrefi, E., Toromani, E., Collaku, N., & Thaci, B. (2019). Allometric biomass equations for young trees of four broadleaved species in Albania. New Zealand Journal of Forestry Science, 49.
Johansson, T. (2007). Biomass production and allometric above-and below-ground relations for young birch stands planted at four spacings on abandoned farmland. Forestry, 80(1), 41-52.
Kebede, B., & Soromessa, T. (2018). Allometric equations for aboveground biomass estimation of Olea europaea L. subsp. cuspidata in Mana Angetu Forest. Ecosystem Health and Sustainability, 4(1), 1-12.
Krejza, J., Světlík, J., & Bednář, P. (2017). Allometric relationship and biomass expansion factors (BEFs) for above-and below-ground biomass prediction and stem volume estimation for ash (Fraxinus excelsior L.) and oak (Quercus robur L.). Trees, 31(4), 1303-1316.
Lü, X.T., Yin, J.X., Jepsen, M.R., & Tang, J.W. (2010). Ecosystem carbon storage and partitioning in a tropical seasonal forest in Southwestern China. Forest Ecology and Management, 260(10), 1798-1803.
Lupi, C., Larocque, G., DesRochers, A., Labrecque, M., Mosseler, A., Major, J., & Ferland-Raymond, B. (2016). Evaluating sampling designs and deriving biomass equations for young plantations of poplar and willow clones. Biomass and Bioenergy, 83, 196-205.
Magalhães, T.M., Cossa, V.N., Guedes, B.S. & Fanheiro, A.S.M. (2020). Species-specific biomass allometric models and expansion factors for indigenous and planted forests of the Mozambique highlands. Journal of Forestry Research, 1-19.
Mate, R., Johansson, T., & Sitoe, A. (2014). Biomass equations for tropical forest tree species in Mozambique. Forests, 5(3), 535-556.
Mensah, S., Veldtman, R., Du Toit, B., Glèlè Kakaï, R., & Seifert, T. (2016). Aboveground biomass and carbon in a South African mistbelt forest and the relationships with tree species diversity and forest structures. Forests, 7(4), 79.
Moore, J.R. (2010). Allometric equations to predict the total above-ground biomass of radiata pine trees. Annals of Forest Science, 67(8), 806.
Mugasha, W.A., Eid, T., Bollandsås, O.M., Malimbwi, R.E., Chamshama, S.A.O., Zahabu, E., & Katani, J.Z. (2013). Allometric models for prediction of above-and belowground biomass of trees in the miombo woodlands of Tanzania. Forest Ecology and Management, 310, 87-101.
Mugasha, W.A., Mwakalukwa, E.E., Luoga, E., Malimbwi, R.E., Zahabu, E., Silayo, D.S., & Kashindye, A. (2016). Allometric models for estimating tree volume and aboveground biomass in lowland forests of Tanzania. International Journal of Forestry Research. 1-13.
Ngomanda, A., Obiang, N.L.E., Lebamba, J., Mavouroulou, Q.M., Gomat, H., Mankou, G.S., & Picard, N. (2014). Site-specific versus pantropical allometric equations: Which option to estimate the biomass of a moist central African forest?. Forest Ecology and Management, 312, 1-9.
Otukei, J.R., & Emanuel, M. (2015). Estimation and mapping of above ground biomass and carbon of Bwindi impenetrable National Park using ALOS PALSAR data. South African Journal of Geomatics, 4(1), 1-13.
Röhling, S., Demant, B., Dunger, K., Neubauer, M., Oehmichen, K., Riedel, T., & Stümer, W. (2019). Equations for estimating belowground biomass of Silver Birch, Oak and Scots Pine in Germany. iForest-Biogeosciences and Forestry, 12(2), 166.
Sabeti, H. (2002). Forest trees and shrubs of Iran. Issued Yazd, 806p.
Sharifi, A., Amini, J., & Pourshakouri, F. (2016). Development of an allometric model to estimate above-ground biomass of forests using MLPNN algorithm, case study: Hyrcanian forests of Iran. Caspian Journal of Environmental Sciences, 14(2), 125-137.
Shater, Z., de-Miguel, S., Kraid, B., Pukkala, T., & Palahi, M. (2011). A growth and yield model for even-aged Pinus brutia. Ten. Stands in Syria. Annuals of Forest Science. 68, 149-157.
Shi, L., & Liu, S. (2017). Methods of estimating forest biomass: A review. Biomass Volume Estimation and Valorization for Energy, 10, 65-73.
Sohrabi, H., & Shirvani, A. (2012). Allometric equations for estimating standing biomass of atlantic pistache (Pistacia atlantica var. mutica) in Khojir National Park. Iranian Journal of Forest, 4(1), 55-64.
Sivakumar, M.V., Lal, R., Selvaraju, R., & Hamdan, I.  (2013). Climate change and food security in West Asia and North Africa. Springer Netherlands.1-423.
Socha, J.. & Kulej, M. (2007). Variation of the tree form factor and taper in European larch of Polish provenances tested under conditions of the Beskid Sądecki mountain range (southern Poland). Journal of forest science, 53(12), 538-547.
Soofizadeh, N., Hosseini, S.M., & Tabari, M. (2010). Effect of seed sowing date, irrigation and weed control on some quantitative and qualitative characteristics of Pinus brutia seedlings in nursery. Iranian Journal of Forest and Poplar Research, 18 (1),77-89.
Stas, S.M., Rutishauser, E., Chave, J., Anten, N.P., & Laumonier, Y. (2017). Estimating the aboveground biomass in an old secondary forest on limestone in the Moluccas, Indonesia: Comparing locally developed versus existing allometric models. Forest Ecology and Management, 389, 27-34.
Teobaldelli, M., Somogyi, Z., Migliavacca, M., & Usoltsev, V.A. (2009). Generalized functions of biomass expansion factors for conifers and broadleaved by stand age, growing stock and site index. Forest Ecology and Management, 257(3), 1004-1013.
Vahedi, A.A. (2016). Artificial neural network application in comparison with modeling allometric equations for predicting above-ground biomass in the Hyrcanian mixed-beech forests of Iran. Biomass and Bioenergy, 88, 66-76.
Vahedi, A. A., Metaji, A., Babaei-Kafaei, S., Eshaghi-Rad, J. & Hojjati, M. (2013). Modeling the bole mass of beech (Fagus Orientalis Lipsky) through allometric equations within Hyrcanian forests. Iranian Journal of Forest, 5(3), 309-322.
Vashum, K.T., & Jayakumar, S. (2012). Methods to estimate above-ground biomass and carbon stock in natural forests-A review. Journal of Ecosystem & Ecography, 4, 1-7.
Vieilledent, G., Vaudry, R., Andriamanohisoa, S.F., Rakotonarivo, O.S., Randrianasolo, H.Z., Razafindrabe, H.N., & Rasamoelina, M. (2012). A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models. Ecological Applications, 22(2), 572-583.
Xayalath, S., Hirota, I., Tomita, S., & Nakagawa, M. (2019). Allometric equations for estimating the aboveground biomass of bamboos in northern Laos. Journal of Forest Research, 24(2), 115-119.
Xue, Y., Yang, Z., Wang, X., Lin, Z., Li, D. & Su, S. (2016). Tree biomass allocation and its model Additivity for Casuarina equisetifolia in a tropical forest of Hainan Island, China. PloS one, 11(3), 1-20.
Youkhana, A.H., Ogoshi, R.M., Kiniry, J.R., Meki, M.N., Nakahata, M.H., & Crow, S.E. (2017). Allometric models for predicting aboveground biomass and carbon stock of tropical perennial C4 grasses in Hawaii. Frontiers in plant science, 8, 650.
Yuen, J.Q., Fung, T., & Ziegler, A.D. (2016). Review of allometric equations for major land covers in SE Asia: Uncertainty and implications for above-and below-ground carbon estimates. Forest Ecology and Management, 360, 323–340.
Zewdie, M., Olsson, M., & Verwijst, T. (2009). Above-ground biomass production and allometric relations of Eucalyptus globulus Labill. coppice plantations along a chronosequence in the central highlands of Ethiopia. Biomass and Bioenergy, 33(3), 421-428.
Zianis, D., Muukkonen, P., Mäkipää, R., & Mencuccini, M. (2005). Biomass and stem volume equations for tree species in Europe. Silva Fennica Monographs 4, 4(2), 5-63.