ارزیابی پاسخ بوم‌سازگان به تغییر کاربری زمین با استفاده از شاخص کیفیت خاک- جنگل الندان ساری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد گروه علوم و مهندسی جنگل دانشکدۀ منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری

2 دانش آموخته دکتری علوم و مهندسی جنگل دانشکدۀ منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری

3 استاد گروه آمار کاربردی دانشکدۀ علوم ریاضی، دانشگاه تربیت مدرس تهران، تهران

4 استادیار گروه مهندسی آب دانشکدۀ مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری

چکیده

در این پژوهش اثر تغییر کاربری زمین بر شاخص کیفیت خاک در منطقۀ الندان-ساری با پنج نوع کاربری متفاوت جنگل خالص راش، جنگل غیرتولیدی، جنگلکاری ون، جنگلکاری کاج سیاه و زمین کشاورزی بررسی شد. بدین منظور نمونه‌برداری خاک از عمق 10-0 سانتی‌متری و با در نظر گرفتن تعداد شش قطعه نمونه انجام گرفت. قطعه نمونه‌ها به ابعاد 20×20 متر در هر کاربری به‌صورت تصادفی سیستماتیک و با استفاده از شبکۀ آماربرداری به ابعاد 100×50 متر انتخاب شده بودند. بعد از اندازه‌گیری مشخصه‌های مختلف فیزیکی، شیمیایی و زیستی خاک برای محاسبۀ شاخص کیفیت خاک، مشخصه‌هایی چون ظرفیت زراعی، چگالی ظاهری، میانگین هندسی قطر خاکدانه، کلسیم، منیزیم و فسفر قابل جذب، نیتروژن کل، آمونیوم، زی‌توده میکروبی نیتروژن و آنزیم‌های اوره‌آز، اسید فسفاتاز و اینورتاز، با استفاده از روش تجزیۀ مؤلفه‌های اصلی به‌عنوان مجموعه حداقل داده‌ها انتخاب شد. در این تحقیق برای ارزیابی کیفیت خاک از دو شاخص تجمعی و وزنی استفاده شد. نتایج حاکی از آن است که جنگلکاری ون بیشترین (76/0 و 25/0) و جنگلکاری کاج سیاه (58/0 و 16/0) و زمین کشاورزی (54/0 و 15/0) کمترین میزان هر دو نوع شاخص تجمعی و وزنی کیفیت خاک (به‌ترتیب) را دارند. کیفیت خاک در شاخص وزنی در جنگلکاری ون به‌طور ویژه‌ای متفاوت با جنگلکاری کاج سیاه و زمین کشاورزی بود. احیای جنگل‌های غیرتولیدی با استفاده از گونۀ سوزنی‌برگی که سبب کاهش کیفیت خاک نظیر وضعیت خاک در زمین کشاورزی شده است توصیه نمی‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluating the response of ecosystems to land-use change using soil quality index-Alandan forest Sari

نویسندگان [English]

  • S.M. Hojjati 1
  • M Asadian 2
  • M Mohammadzadeh 3
  • M Nadi 4
1 Prof., Dept. of Forest Science and Engineering, Faculty of Natural Resources, Sari University of Agricultural Sciences and Natural Resources, I. R. Iran
2 Ph.D in Forest Science and Engineering, Faculty of Natural Resources, Sari University of Agricultural Sciences and Natural Resources, I. R. Iran
3 Prof., Dept. of Applied Statistics, Faculty of Mathematical Science, Tehran University of Tarbiat Modares, I. R. Iran
4 Assistant Prof., Dept. of water engineering, Faculty of Agricultural engineering, Sari University of Agricultural Sciences and Natural Resources, I. R. Iran
چکیده [English]

This study investigated the influence of land-use change on soil quality in the Alandan area of Sari, with five different types of land-uses, namely pure beech stand and destructed forest stand, ash plantation, pine plantation, and arable land. Soil samples were taken from a soil depth of 0-10cm, using six plots (20×20m) in each site, which were selected by random systematic sampling network (50×100 m). The different physical, chemical, and biological characteristics of soil were measured in the laboratory. To calculate the soil quality index, characteristics such as field capacity, bulk density, geometric mean diameter, calcium, magnesium, and phosphorus availability, total nitrogen, ammonium, nitrogen microbial biomass and urease, acid phosphatase, and invertase enzyme were selected as the minimum data set by principal component analysis. In this study, additive and weighted indices were used to evaluate soil quality. The results showed that the higher amount of both additive and weighted index of soil quality were observed in ash plantation (0.76, 0.25), and their lowest amount was found in pine plantation (0.58, 0.16) and arable land (0.54, 0.15), respectively. It should be noted that the weighted index of soil quality in ash plantations was significantly higher than in different pine plantations and arable land. Also, the results of this study confirm that rehabilitation of degraded forests using coniferous species, which has led to a decrease in soil quality, such as soil condition in agricultural land, is not recommended.

کلیدواژه‌ها [English]

  • Plantation
  • Forest soil
  • Additive index
  • weighted index
  • Minimum data set
                                                                           
Ali Asgharzade, N. (2010). Laboratory methods in soil biology. Tabriz: Tabriz university press. (In Persian)
Alef, K., & Nannipieri, P. (1995). Methods in applied soil microbiology and biochemistry. London: Academic Press.
Antonious, G.F. (2018). Biochar and Animal Manure Impact on Soil, Crop Yield and Quality. Agricultural Waste and Residues. IntechOpen, 45-67. https://doi.org/10.5772/intechopen.77008
Are, K.S., Oluwatosin, G.A., Adeola, O., & Ke, A.O. (2009). Slash and burn effect on soil quality of an Alfisol: soil physical properties. Soil and Tillage Research, 103, 4-10. http://dx.doi.org/10.1016/j.still.2008.08.011
Arévalo-Gardini, E., Canto, M., Alegre, J., Loli, O., Julca, A., & Baligar, V. (2015). Changes in Soil Physical and Chemical Properties in Long Term Improved Natural and Traditional Agroforestry Management Systems of Cacao Genotypes in Peruvian Amazon. PLoS ONE, 10(7), e0132147. http://dx.doi.org/10.1371/journal.pone.0132147
Asadian, M., Hojjati, S.M., Pourmajidian, M.R., & Fallah, A. (2012). Impact of Land-use management on nitrogen transfor-mation in a mountain forest ecosystem in the north of Iran. Journal of forestry Research, 24(1), 115-119. http://dx.doi.org/10.1007/s11676-012-0291-z
Asadian, M., Hojjati, S.M., Pormajidian, M.R., & Fallah, A. (2013). Biodiversity and soil properties in Pine (Pinus nigra Arnold.) and Ash (Fraxinus excelsior L.) plantations (Case study: Alandan Forest, Sari). Iranian Journal of Forest and Poplar Research, 20(2), 299-312. https://doi.org/10.22092/ijfpr.2012.107281 (In Persian)
Asadian, M., Hojjati, S.M., Mohammadzadeh, M., & Nadi, M. (2022).The changes of soil carbon, nitrogen and aggregate stability affected by different land uses. Journal of Forest Research and Development, 8(2), 133-146. https://doi.org/10.30466/jfrd.2021.53919.1577 (In Persian)
Asghari Meidani, J., Karimi, E., & Pormohammad, A. (2013). Effects of Different Tillage and Cultivation Practices on Soil Moisture and Safflower Yield in Rotation with Wheat in Rainfed Regions. Water and Soil Science, 23(1), 237-245. (In Persian)
Blesh, J., & Ying, T. (2020). Soil fertility status controls the decomposition of litter mixture residues. Ecosphere, 11(8), 1-20. https://doi.org/10.1002/ecs2.3237
Corstanje, R., Schulin, R., & Lark, R.M. (2007). Scale-dependent relationships between Soil organic carbon and urease activity. European Journal of Soil Science, 58, 1087-1095. https://doi.org/10.1111/j.1365-2389.2007.00902.x
 Dorich, R.A., & Nelson, D.W. (1983). Direct Colorimetric Measurement of Ammounium in Potassium Chloride Extracts of Soils. Soil Science Society of America Journal, 47(4), 833-836. https://doi.org/10.2136/sssaj1983.03615995004700040042x
Emily, E., Marriott, M., & Wander, M. (2006). Total and Labile Soil Organic Matter in Organic and Conventional Farming Systems - Marriott. Soil Science Society of America Journal, 70(3), 950-959. https://doi.org/10.2136/sssaj2005.0241
 Forest and Rangeland Organization (2004). Booklet of Tajan Forestry Plan-6 Alandan District. Forest and Rangeland Organization of Sari. (In Persian)
Gorji, M., Kakeh, J., & Alimohammadi, A. (2017). Quantitative soil quality assessment in different land uses at parts of south eastern Qazvin. Iranian Journal of Soil and Water Research, 47(4), 775-784. https://doi.org/10.22059/ijswr.2016.59984 (In Persian)
Gunjal, A.B., Waghmode, M.S., Patil, N.N., & Nawani, N.N. (2019). Significance of soil enzymes in Agriculture. (pp. 159-168). Pune: Smart Bioremediation Technologies.
Huang, J., Liu, W., Yang, S., Yang, L., Peng, Z., Deng, M., Xu, S., Zhang, B., Ahirwal, J., & Liu, L. (2021). Plant carbon inputs through shoot, root, and mycorrhizal pathways affect soil organic carbon turnover differently. Soil Biology and Biochemistry, 160, 108322. https://doi.org/10.1016/j.soilbio.2021.108322
Inagaki, Y., Miura, S., & Kohzo, A. (2004). Effects of forest type and stand age a litter fall Quality and soil Ndynamics in Shikoka district,southem Japon. Forest ecology and Management, 202, 107-117.
Jafari-Haghigh, M. (2003). Methods of Soil Analysis. Mashhad: Nedaye Zoha press. (In Persian)
Jia, X., Zhong, Y., Liu, J., Zhu, G., Shangguan, Z., & Yan, Weiming. (2020). Effects of nitrogen enrichment on soil microbial characteristics: From biomass to enzyme activities. Geoderma, 366, 114256. https://doi.org/10.1016/j.geoderma.2020.114256
Kalhor, S.K., Xu, X., Chen, W., Hua, R., Raza, S., & Ding, K. (2017). Effects of Different Land-Use Systems on Soil Aggregates (A Case Study of the Loess Plateau, Northern China). Sustainability, 9(1349), 105-123. https://doi.org/10.3390/su9081349
Khatirpasha, N., Hojjati, S.M., Pourmajidiyan, M.R., & Asadiyan, M. (2018). Impact of land use change on physical, chemical and biological soil properties in the Qalek forest-Ghaemshahr city. Journal of Water and Soil Conservation, 24(6), 211-225. https://doi.org/10.22069/jwsc.2018.12068.2685 (In Persian)
Kibebew, K. (2014). Report on Characterization of agricultural soils in Cascape Intervention woredas in Eastern Region of Ethiopia. (Pp- 1–234). Haramaya University.
Kooch, Y., Moghimian, N., & Kolb, Steffen. (2019). Microbial hotspot areas of C and N cycles in old-growth Hyrcanian forests top soils. Forest Ecology and Management, 446, 93-104. https://doi.org/10.1016/j.foreco.2019.05.022
Ma, Q., Watanabe, T., Zheng, J., & Funakawa, S. (2021). Interactive effects of crop residue quality and nitrogen fertilization on soil organic carbon priming in agricultural Soils. Journal. Soil Sediment, 21, 83–95. https://link.springer.com/article/10.1007/s11368-020-02797-8
Mahmoodabadi, M., & Heydarpour, E. (2014). Sequestration of organic carbon influenced by the application of straw residue and farmyard manure in two different soils. International Agrophysics, 28(2), 169 - 176. (In Persian)
Manpoong, C., & Tripathi, S.K. (2019). Soil Properties under Different Land Use Systems of Mizoram, North East India. Journal of Applied and Natural Science, 11(1), 121-125.   http://dx.doi.org/10.31018/jans.v11i1.1999
Martinez-Salgado, M.M., Gutiérrez-Romero, V., Jannsens, M., & Ortega-Blu, R. (2010). Biological soil quality indicators: a review. p. 319-328. In: Mendez-Vilas, A. (ed.) Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. Formatex Research Center.
Mirzavand, J., & Asadi Rahmani, H.  (2020). Effect of Different Tillage Practices on Phosphatase and Urease Activities in a Calcareous Soil. Journal of Soil biology, 8(1), 15-25. https://doi.org/10.22092/sbj.2020.121869 (In Persian)
Moffat, A.J. (2005). Indicators of soil quality for UK forestry. Forestry, 76, 1–22.
Nourmandipour, F., Amir Delavari, M., Lal, P., & Joseph, S. (2020). Influence of Rice Husk Biomass and Its Biochar on Some Enzymatic Activities in a Calcareous Sandy Soil. Iranian Journal of Soil and Water Research, 51(7), 1841-1855. https://dx.doi.org/10.22059/ijswr.2020.295313.668458 (In Persian)
Passandideh, M., Malakouti, M.J., MohammadIsmail, Z., & Shahbazi, K. (2018). Investigating Soil Phosphorous in Agricultural Lands of ParsAbad-e- Moghan. Iranian Journal of Soil Research, 32(3), 361-373. https://doi.org/10.22092/ijsr.2018.117825 (In Persian)
Stivastava, R., Mohapatra, M., & Latare, A. (2020). Impact of Land Use Changes on Soil Quality and Species Diversity in the Vindhyan Dry Tropical Region of India. Journal of Tropical Ecology, 36(2), 72–79. https://doi.org/10.1017/S0266467419000385
Ray, S.K., Bhattacharyya,T., Reddy, K.R., Pal, D.K., Chandran, P., Tiwary, P., & Mandal, D.K. (2014). Soil and Land Quality Indicators of the Indo-Gangetic Plains of India. Current Science, 107(9), 1470–86.
Reahi, M. (2009). Effects of microbial activity and soil enzymes on some reference rangelands of Chaharmahal va Bakhtiari province. MSc thesis. Shahrekord University. (In Persian)
Ren, H.Y., Qin, J., Yan, B.L., Alata, B., & Han, G.D. (2018). Mass loss and nutrient dynamics during litter decomposition in response to warming and nitrogen addition in a desert steppe. Front. Agric. Sci. Eng, 5, 64–70. https://doi.org/10.15302/J-FASE-2017194
Rutigliano, F.A., Marco, A. De., D Ascoli, R.,  Castaldi, S., Gentile, A., &Virzo De Santo, A. (2007). Impact of fire on fugal abundance and microbial efficiency in C assimilation and mineralization in a Mediterranean maquis soil. Biol Fertil Soils, 44, 377−381. http://dx.doi.org/10.1007/s00374-007-0214-x
Saxton, k.e., & Rawls, W.J. (2006). Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Science Society of America Journal, 70, 1569-1578. https://doi.org/10.2136/sssaj2005.0117
Shahid, M., Nayak, A.K., Puree, C., Tripathi, R., Lal, B., Gautam, P., Bhattacharyya, P., Mohanty, S., Kumar, A., Panda, B.B., Kumar, U., & Shukla, A.K. (2017). Carbon and nitrogen fractions and stocks under 41 years of chemical and organic fertilization in a sub-humid tropical rice soil. Soil & Tillage Research, 170, 136–146. http://dx.doi.org/10.1016/j.still.2017.03.008
Sheikhloo, F., & Sadaghiani, M. (2016). Effects of Different Agronomic and Forest Land Uses on Soil Enzyme Activity. Iranian Journal of Soil and Water Research, 47(1), 205-216. https://doi.org/10.22059/ijswr.2016.57992 (In Persian)
Tian, Y., Xu, Z., Wang, J., & Wang, Z. (2022). Evaluation of Soil Quality for Different Types of Land Use Based on Minimum Dataset in the Typical Desert Steppe in Ningxia, China. Journal of Advanced Transportation, 2022, 1-14. https://doi.org/10.1155/2022/7506189
Twum, E.K.A., & Annang, S.N. (2022). Impact of Soil Compaction on Bulk Density and Root Biomass of Quercus Petraea L. at Reclaimed Post-Lignite Mining Site in Lusatia, Germany. Applied and Environmental Soil Science, 2015, 1-5. https://doi.org/10.1155/2015/504603
Vasu, D., Surendra, K.S., Sanjay, K.R., Perumal, D., Pramod, T., Padikkal, C., Anant, M., & Shyam G.A. (2016). Soil Quality Index (SQI) as a Tool to Evaluate Crop Productivity in Semi-Arid Deccan Plateau, India. Geoderma, 282, 70–79. https://doi.org/10.1016/j.geoderma.2016.07.010
Wang, L., & Qu, J. (2009). Satellite remote sensing applications for surface soil moisture monitoring. Earth Science, 3, 237-247.
Zheng, W., Zhao, Z., Gong, Q., Zhai, B., & Li, Z. (2018). Responses of fungal–bacterial Community and network to organic inputs vary among different spatial habitats in soil. Soil Biology and Biochemistry, 125, 54-63. https://doi.org/10.1016/j.soilbio.2018.06.029