تعیین سن بهره‌برداری با توجه به بهینه‌سازی ارزش خالص فعلی سری‌های دوره‌ای متناهی چوب و ترسیب کربن در جنگلکاری‌های صنوبر (Populus deltoides Marshall) استان گیلان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار پژوهشکدۀ محیط زیست جهاد دانشگاهی، رشت، ایران

2 دانشیار دانشکدۀ کشاورزی و منابع طبیعی اهر، دانشگاه تبریز

3 رئیس ادارۀ جنگلداری ادارۀ کل منابع طبیعی و آبخیزداری استان گیلان، رشت، ایران

10.22034/ijf.2022.331195.1854

چکیده

در این تحقیق برای تعیین سن بهینۀ بهره‌برداری از مدل توسعه‌یافتۀ فاستمن به‌منظور تعیین ارزش‌های چوبی و غیرچوبی در جنگل‌های همسال استفاده شده است. چهار منطقۀ جنگلکاری صنوبر از غرب (حفظ‌آباد تالش)، مرکز (چوبر شفت)، شرق (چالشم سیاهکل) و ساحل (چاف و چمخالۀ لنگرود) استان گیلان انتخاب شدند. رویش حجم با استفاده از نتایج آنالیز تنه و مقدار کربن اندام‌های هوایی با استفاده از روش احتراق محاسبه شد. سپس ارزش خالص فعلی چوب و ترسیب کربن برای سری‌های دوره‌ای متناهی با استفاده از رویش حجمی و اندوختۀ کربن، نرخ تنزیل، قیمت تعدیل‌شدۀ چوب با استفاده از مدل خودکاهشی مانا، قیمت تعدیل‌شدۀ کربن با استفاده از مدل خودکاهشی نامانا، درآمد نهایی و هزینۀ نهایی محاسبه شد. سن بهینۀ بهره‌برداری با در نظر گرفتن ارزش خالص فعلی چوب در این مناطق از 6 تا 9 سال و با در نظر گرفتن ارزش خالص فعلی کربن از 11 تا 15 سال و ارزش خالص فعلی چوب و کربن به‌طور توأم 7 تا 10 سال به‌دست آمد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Rotation Age of Populus deltoides Marshall. Based on Optimizing Net Present Value of Timber and Carbon Sequestration at the Finite Series of Identical in Guilan

نویسندگان [English]

  • T Abedi 1
  • H.R. Maskani 1
  • R Abedi 2
  • B Bakhshandeh 3
1 Assistant prof., Environmental Research Institute, Academic Center for Education, Culture and Research, Rasht, Iran
2 Associate Prof., Dept. of Forestry, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Iran
3 General Dept. of Natural Resources and Watershed Management of Guilan Province, Rasht, Iran
چکیده [English]

The aim of this study was to determine the optimal rotation age of even-aged forests with respect to timber and non-timber values by developing the Faustmann model. We conducted the study in four regions of Populus deltoides Marshall. plantations located in the west (Hefz-Abad in Talesh), center (Choobar in Shaft), east (Chalesham in Siahkal), and coastal region (Chaf-chamkhaleh in Langeroud) of Gilan province. We determined the volume increment by the stem analysis method and carbon sequestration by combustion in an electric oven. Then, Net Present Value (NPV) of timber and carbon sequestration is calculated by using volume increment, carbon amount, discount rate, adjusted timber price by stationary autoregressive model, carbon price by non-stationary model, the marginal revenue and marginal cost at the finite series of identical. Results showed that when the economic value of timber is considered, optimal rotation ages are 6-9 years. Optimal rotation ages when carbon sequestration is considered increased to 11-15 years. Integration of carbon sequestration value into timber economic value increased the optimal rotation ages to 7-10 years.

کلیدواژه‌ها [English]

  • Adjusted Price
  • Carbon Value
  • Increment
  • Marginal Revenue
  • Stem Analysis
 
Adetoye, A.M.,  Okojie, L.O., & Akerele, D. (2018). Forest carbon sequestration supply function for African countries: An econometric modelling approach. Forest Policy and Economics, 90, 59-66. DOI:10.1016/j.forpol.2018.01.007
Aminu, S.A., Daniel, S., & Yakubu, I. (2019). Tree Volume Equation for Populus deltoides (Poplar) Tree under Agroforestry Based. International Journal of Current Microbiology and Applied Sciences, 8(2), 1470-1475. https://doi.org/10.20546/ijcmas.2019.802.170
Arora, G., Chaturvedi, S., Kaushal, R., Nain, A.S., Tewari, S.K., Alam, N.M., & Chaturvedi, O.P. (2014). Growth, biomass, carbon stocks, and sequestration in age series of Populus deltoides plantations in Tarai region of central Himalaya. Turkish Journal of Agriculture and Forestry, 38, 550-560. DOI:10.3906/tar-1307-94
Asante, P.W., Armstrong, G.L., & Wiktor, A. (2011). Carbon sequestration and the optimal forest harvest decision: A dynamic programming approach considering biomass and dead organic matter. Journal of Forest Economics, 17(1), 3-17. DOI:10.1016/j.jfe.2010.07.001
Askarii, Y., Iranmanesh, Y., & Pourhashemi, M. (2021). The economic value and comparison of carbon storage in different forest areas in Kohgiluyeh and Boyer-Ahmad province. Iranian Journal of Forest, 13(2), 169-182. (In Persian)
Assmuth, A., & Tahvonen, O. (2018). Optimal carbon storage in even- and uneven-aged forestry. Forest Policy and Economics, 87, 93-100. https://doi.org/10.1016/j.forpol.2017.09.004
Bakhtiarvand Bakhtiari, S., & Sohrabi, H. (2012). Allometric equations for estimating above and below-ground carbon storage of four broadleaved and coniferous trees. Iranian Journal of Forest and Poplar Research, 20(3), 481-492. (In Persian)
Ben Abdallah, S., &  Lasserre, P. (2017).  Forest land value and rotation with an alternative land use. Journal of Forest Economics, 29(B), 118-127. https://doi.org/10.1016/j.jfe.2017.09.002
Carbon Emissions Futures Historical Prices (2017). Available at https://www.investing.com/commodities/carbon-emissions-historical-data.
Central Bank of Iran (2017). www.cbi.ir. Inflation/Inflation_FA.asp.
Creedy, J., & Wurzbacher, A. (2001). The economic value of a forested catchment with timber, water and carbon sequestration benefits. Ecological Economy, (38), 71-83.
Diaz-Balteiro, L., & Rodriguez, L.C.E. (2006). Optimal rotation on Eucalyptus plantations including carbon sequestration a comparison of results in Brazil and Spain. Forest Ecology and Management, (229), 247-258. https://doi.org/10.1016/j.foreco.2006.04.005
Ekholm, T. (2016). Optimal forest rotation age under efficient climate change mitigation. Forest Policy and Economics, (62), 62-68. https://doi.org/10.1016/j.forpol.2015.10.007
Englin, J., & Callaway, J. (1995). Environmental impacts of sequestering carbon through forestation. Climate Change, (31), 67-78.
Eslamdoust J., Sohrabi H., & Hosseini, S.M. (2015). Evaluation of growth Feature of Populus deltoides and Taxodium distichum trees using stem analysis. Journal of Natural Ecosystems of Iran, 5(3), 51-58. (In Persian)
Faustmann, M. (1849). Calculation of the value which forest land and immature stands process for forestry. Journal of Forest Economy, (1), 7-44. Reprinted in 1995.
Forouzeh, M.R., Heshmati, A., Ghanbariyan, Gh.A., & Mesbah, S.H. (2008). Comparison potential carbon sequestration Helianthemum lippii (Pers.), Dendrostellera lessertii (Van Tigeh.) and Artemisia sieberi Besser in arid rangeland of Iran (case study: Garbayegan Fasa in Fars province). Iranian Journal of Environmental Science, 46(2), 65-72. (In Persian)
Ghasemi Nejad Raeini, M., & Sadeghi, H. (2018). Evaluation of carbon sequestration in soil and plant organs of Zygophyllum atriplicoides and Gymnocarpus decander (Case study: Saleh-Abad, Hormozgan). Iranian Journal of Range and Desert Research, 24(4),699-707. (In Persian)
Ghorani, G., Jahani, A., & Sardabi, H. (2014). Estimation of Standing Volume in Populus Deltoides Marsh. Plantations By Huber And Smalian Methods At Shafaroud Forest, Guilan Province.  Iranian Journal of Forest and Poplar Research22(1), 55, 74-81. (In Persian)
Hartman, R. (1976). The harvesting decision when a standing forest has value. Economic Inquiry, 14, 52-58.
Heidari Safari Kouchi, A., Y. Iranmanesh & Rostami Shahraji, T. (2016). Above-ground and soil carbon sequestration of white poplar (Populus alba L.) species in four different planting spaces in Chaharmahal and Bakhtiari province. Iranian Journal of Forest and Poplar Research, 24(2), 200-213. (In Persian)
Henry, M., Besnard, A., Asante, W.A., Eshun, J., Adu-Bredu, S., Valentini, R., Bernoux, M., & Saint-André, L. (2010). Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. Forest Ecology and Management, (260), 1375-1388. https://doi.org/10.1016/j.foreco.2010.07.040.
Heshmatol Vaezin, S.M., Khezriyan, B., Namiranian, M., Hajjarian, M., Janat Babaii, M., & Shaykhkanlooy Milan, F. (2020). Determining the economically optimal planting interval, planting pattern and rotation age for high-yielding black poplar (Populus nigra L.) clones in West Azerbaijan province, Iran. Iranian Journal of Forest, 12(2), 233-256. (in Persian)
Huang, Q.F., Sun, Q.X., Wu, Z.M., & Xiang, Y.A. (2002). Study on principal felling age of poplar plantation on Changjiang River beach. Scientia Silvae Sinica, (39), 154–158. DOI: 10.11707/j.1001-7488.20020626.
Jahanpour, F., Derikvandi, A., Ramak, P., Ghasemi, R.A., Calagari, M., & Karamian, R. (2019). Investigation On Adaptation and Growth Characteristics of Different Closed-Crown Poplar Clones Under Climatical Conditions Of Khorram Abad. Iranian Journal of Forest and Poplar Research,  4(74),  471 - 482. (in Persian)
Keleş, S. (2017). Determining optimum cutting ages including timber production and carbon sequestration benefits in Turkish pine plantations. Sains Malaysiana, 46(3), 381-386. http://dx.doi.org/10.17576/jsm-2017-4603-04.
Kiaei, M. (2014). Investigation on wood properties of Eldar pine (Pinus eldarica Medw) and its relations to soil chemical and physical characteristics (in western of mazandaran province plantation). Iranian Journal of Wood and Paper Science Research, 29(2), 199-207. (in Persian)
Latifi nia, A., Soosani, J., Adeli, K., Otakh, E., & Namdari, S. (2021). Study on Growth Performance of Pinus Brutia Ten in the Oldest Plantation Stand of in Khorramabad. Journal of Environmental Science and Technology, 23(5), 189-200. (in Persian)
Liski, J., Pussinen, A., Pingoud, K., Makipaa, R., & Karjalainen, T. (2001). Which rotation length is favourable to carbon sequestration?. Canadian Journal of Forest Research, (31), 2004-2013. https://doi.org/10.1139/x01-140.
Lohmander, P., & Mohammadi Limaei, S. (2008). Optimal continuous cover forest management in an uneven-aged forest in the north of Iran. Journal of Applied Sciences, 8(11), 1995-2007. DOI: 10.3923/jas.2008.1995.2007
Metsaranta, J.M., & Bhatti, J.S. (2016). Evaluation of Whole Tree growth increment derived from tree-ring series for use in assessments of changes in forest productivity across various spatial scales. Forests, 7(303), 1-11. https://doi.org/10.3390/f7120303
Moftakhar Juybary.  M., & Heshmatol Vaezin, S.M. (2016). Seasonal Fluctuations Assessment of Log and Lumber Prices Using MultipleRegression Analysis: Case Study of Azarood Forest, Mazandaran. Journal of Forest and Wood Products, 68(2), 371-382. (In Persian).
Mohammadi Limaei, S. (2011). Economics optimization of forest management, LAP LAMBERT Academic Publication, Germany, 140 pp.
Mohammadi Limaei, S., & Lohmander, P. (2007). Stumpage prices in the iranian caspian forests. Asian journal of plant sciences, (6), 1027-1036. DOI: 10.3923/ajps.2007.1027.1036
Mohammadi Limaei, S., Bahramabadi, Z., Shahraje, T.R., Adibnejad, M., & Koupar, S.A.M. (2013). Determination of economically optimal rotation age of (Popolus deltoides) in Guilan Province. Iranian Journal of Forest and Poplar Research, 21(1), 63-75. (In Persian)
Mohammadi Limaei, S., Heybatian, R., Heshmatol Vaezin, S.M., & Torkman, J. (2011). Wood import and export and its relation to major macroeconomics variables in Iran. Forest Policy and Economics, 13 (4), 303-307. DOI:10.1016/j.forpol.2011.03.001.
Mohammadi, A. & Moayeri, M.H. (2016). Determining the harvest age (Economic) of even- aged stands of paulownia plantation in Dr. Bahramnia's Forestry Plan. Journal of Wood and Forest Science and Technology, 23(2), 203-223. (In Persian)
Naghdi, R., Mirzaei, M., Aghajani, A.H., & Torkaman, J. (2021). Estimation stock and economic value of carbon storage of root and stump of Populus deltoides in poplar plantation of Guilan province. Iranian Journal of Forest, 13(2), 197-208. (In persian).
Nghiem, N. (2014). Optimal rotation age for carbon sequestration and biodiversity conservation in Vietnam. Forest Policy and Economics, (38), 56-64. https://doi.org/10.1016/j.forpol.2013.04.001
Olschewski, R., & Benítez, P.C. (2010). Optimizing joint production of timber and carbon sequestration of afforestation projects. Journal of Forest Economics, 16(1), 1-10. https://doi.org/10.1016/j.jfe.2009.03.002
Parsapour, M.K., Sohrabi, H., Soltani, A., & Iranmanesh, Y. (2013). Allometric equations for estimating biomass in four poplar species at Charmahal and Bakhtiari province. Iranian Journal of Forest and Poplar, 21(3), 517-528. (In Persian)
Rhodes, C.J. (2016). The 2015 Paris Climate Change Conference: COP21. Science Progress, 99(1), 97–104.
Tang, W.P. (2009). Density Control Techniques and Successive Planting Effect of Poplar Plantation in Jianghan Plain. Ph.D. Thesis, Beijing Forestry University, Beijing, China.
United Nations Framework Convention on Climate Change (UNFCCC) (2007). The mechanisms under the Kyoto Protocol: The Clean Development Mechanisms, Joint Implementation and emission trading. Available at http://www.unfccc.int/ Kyoto protocol/ mechanisms/ items/ 1673.php.
Van Kooten, G.C., Binkley C.S., & Delcourt, G. (1995). Effect of carbon taxes and subsidies on optimal forest rotation age and supply of carbon services. American journal of Agricultural and Economics, 77(2), 365-374.
Zhang, Y., Tian, Y., Ding, S.L.Y., Samjhana, W., & Fang, Sh. (2020). Growth, Carbon Storage, and Optimal Rotation in Poplar Plantations: A Case Study on Clone and Planting Spacing Effects. Forests, 11 (842), 1-15. https://doi.org/10.3390/f11080842.
Zhou, W., & Gao, L. (2016). The impact of carbon trade on the management of short-rotation forest plantations. Forest Policy and Economics, (62), 30-35. DOI: 10.1016/j.forpol.2015.10.008.
Zobeiry, M. 1994. Forest inventory (Measurement of tree and forest). Tehran University Press, 3, 401.