بهبود عملکرد بذرهای توس (Betula pendula Roth) با استفاده از نانوپرایم و مغناطیس

نوع مقاله : مقاله پژوهشی


1 دانش‌آموختۀ کارشناسی ارشد دانشکدۀ علوم جنگل دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 دانشیار دانشکدۀ علوم جنگل دانشگاه علوم کشاورزی و منابع طبیعی گرگان

3 استادیار دانشکدۀ علوم جنگل دانشگاه علوم کشاورزی و منابع طبیعی گرگان

4 استادیار مرکز تحقیقات کشاورزی و منابع طبیعی استان مرکزی

5 دانشیار دانشکدۀ مهندسی چوب و کاغذ دانشگاه علوم کشاورزی و منابع طبیعی گرگان

6 استادیار پژوهش، بخش تحقیقات منابع طبیعی، مرکز تحقیقات کشاورزی و منابع طبیعی استان گلستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، گرگان، ایران


تحقیق حاضر با هدف بررسی امکان افزایش شاخص‌های صفات جوانه‎زنی (درصد و سرعت سبز شدن) و رویشی گیاهچه‌های سه‌ماهۀ Betula pendula Roth  (طول ساقه و ریشه، قطر یقه، وزن ‌تر و خشک ریشه و ساقه و نیز سطح برگ) با اعمال نانوپرایمینگ و تیمار مغناطیس انجام گرفت. بذرها از سیاه‌مرزکوه در 18 کیلومتری گرگان جمع‎آوری و پس از ضدعفونی در محلول نانو‌کیتین، نانوکیتوزان و نانوسلولز 1 درصد پرایم خیسانده و سپس کاشته شدند. تیمار مغناطیس برای بذرها در سه سطح 20، 30 و 40 میلی‌تسلا و زمان 1، 10 و 20 دقیقه اعمال شد و بذرها بلافاصله کاشته شدند. تعدادی از بذرها نیز بعد از قرار گرفتن تحت تأثیر میدان مغناطیس (با دوز و زمان قبلی)‌، با هر سه نانوماده پرایم و سپس کشت شدند. نتایج نشان داد که از بین همۀ تیمارهای اعمال‌شده، مغناطیس یک‌دقیقه‌ای بذرها در شدت 30 میلی‌تسلا و سپس پرایم دوساعتۀ بذرها با نانوسلولز 1 درصد بهترین نتایج را در پی دارد، به‌نحوی که موجب افزایش درصد سبز شدن (58/1 برابر) سرعت سبز شدن (9/1 برابر) تعداد برگ (2/1 برابر) سطح برگ (84/1 برابر) و طول ریشه (4/1 برابر) نسبت به شاهد (فاقد تیمار) شد. تیمار مغناطیس 20 دقیقه‌ای بذرها در شدت 30 میلی‌تسلا و سپس پرایم دوساعتۀ بذرها با نانوسلولز 1 درصد نیز نتایج مشابهی داده است‌. دو تیمار 10 و 20 دقیقه‌ای بذرها در 30 میلی‌تسلا (بدون نانوپرایم) نیز بعد از این دو تیمار توصیه می‌شوند.


عنوان مقاله [English]

Improving the performance of birch seeds (Betula pendula) using nanoprime and magnetic field

نویسندگان [English]

  • R. Pordel 1
  • V. Payamnoor 2
  • J. mohammadi 3
  • Gh. Goodarzi 4
  • H. Yousefi 5
  • A. Ahmadi 6
1 M.Sc.Graduate student, Faculty of Forest Sciences, Gorgan University of Agricultural Sciences and Natural Resources, I. R. Iran
2 Associate Prof., Faculty of Forest Sciences, Gorgan University of Agricultural Sciences and Natural Resources, I. R. Iran
3 Assistant Prof., Faculty of Forest Sciences, Gorgan University of Agricultural Sciences and Natural Resources, I. R. Iran
4 Assistant Prof., of Agricultural and Natural Resources Research, Markazi Province, I. R. Iran
5 Associate Prof., Faculty of Wood and Paper Engineering, Gorgan University of Agricultural Sciences and Natural Resources, I. R. Iran
6 Assistant Prof., Research Division of Natural Resources, Golestan Agriculture and Natural Resources Research and Education Center, AREEO, Gorgan, I. R. Iran
چکیده [English]

The aim of this study was to investigate the possibility of increasing the germination traits (germination and rate percentage) and vegetation characteristics of 3-month-old seedlings of Betula pendula (plumule and radicle length, collar diameter, fresh and dry weight of root, leaf area) by applying nano-priming and magnetic field. Seeds were collected from the Siah- Marzkouh area, 18 km from Gorgan-Golestan, Iran and after disinfection they were primed (soaked)  in a 1% solution of nano-chitin, nano-chitosan and nano-cellulose, and then sown. Magnetic treatment was applied to the seeds at three levels of 20, 30 and 40 mT at 1, 10 and 20 minutes and were sown immediately. A number of seeds were primed with all 3 nanomaterials after being exposed to the magnetic field (with the previous dose and time) and then planted. The results showed that among all the applied treatments, 1 min magnetism in 30 mT and then 2 hour seed priming with 1% solution of nanocellulose, were the best, In a way that increased the germination percentage (1.58 times), germination rate (1.9 times), number of leaves (1.2 times), leaf area (1.84 times) and root length (1.4 times) compared to the control (no treatment). The 20-minute magnetic treatment of seeds at 30 mT intensity and then the two-hour seed priming with 1% nanocellulose gave similar results. Two seed treatments (10 and 20 minute) in 30 mT (without nanopriming) are also recommended after these two treatments.

کلیدواژه‌ها [English]

  • Birch
  • Nano cellulose
  • Nano chitin
  • Nano chitosan
  • Magnetic treatment
Ahani, H., Jalilvand, H., Vaezi, J., & Sadati, S.E. (2015). Effect of different treatments on Hippophae rhamnoides seed germination in laboratory. Iranian Journal of Forest, 7(1), 45-56.
Ahmed, M., Elzaawely, A., & Bayoumi, Y. (2013). Effect of Magnetic Field on Seed Germination, Growth and Yield of Sweet Pepper (Capsicum annuum L.). Asian Journal of Crop Science, 5, 286-294.
Ayan, S., Hasdemir, B., Turfan, N., Ozel, H., & Yer, E. (2018(. The effect of magnetic field applications to chemical content of stratified and unstratified seeds of sycamore maple (Acer pseudoplatanus L.). Fresenius environmental bulletin, 27(5), 3815-3822.
Belyavskaya, N.A. (2001). Ultrastructure and calcium balance in meristem cells oF pearoots exposed to extremely low magnetic Fields. Advances in Space Research, 28, 645–650.
Çelik, O., Atak, C., & Rzakulieva, A. (2008). Stimulation of rapid regeneration by a magnetic field in Paulownia node cultures. Journal of Central European Agriculture, 9, 297-304.
Daghestani, M., Salehi, B., & Cheragi, Sh. (2018). The effect of planting depth and seedbed type treatments on the growth and survival of oak (Quercus brantii Lindl.) saplings. Iranian Journal of Forest, 10 (1), 102-109.
Dhawi, F., Al-Khayri, J.M., & Hassan, E. (2009). Static magnetic field influence on elements clements composition in date (Phoenix dactylifera L.). Research Journal of Biological Sciences, 5, 161-166.
Ekhtiari, R., & Moraghebi, F. (2011). The study of the effects of nano silver technology on salinity tolerance of cumin seed (Cuminum cyminum L.). Plant and ecosystem, 7(25), 99-107.
Fischer, G.M., Tausz, M., Köck, M., & Grill. D. (2004). Effects of weak 16 Hz magnetic fields on growth parameters of young sunflower and wheat seedling. Biolectromagnetics, 25, 638-641.
Forest tree seed directory )2009(. Caspian forest tree seed centre. Forests, Range and Watershed Management Organization. 16pp.
Goodarzi, G.R., Payamnoor, V., & Ahmadloo, F. (2017). Effects of nanoparticle treatments on propagation of Prunus mahaleb L. by seed. Journal of forest science, 63, 408–416.
Gosling, P. (2007). Raising trees and shrubs from seed. Forestry Commission Practice Guide. Forestry Commission, Edinburgh. 28 pp.
Haghighia, M., & Pessarakli, M. (2013). Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Journal of Elsevier, 21, 13–17.
Hartmann H.T., Kester D.E., Davies F.E., & Geneve R. (2011). Propagation of Selected Plant Species, Propagation of Ornamental Trees, Shrubs and Woody Vines. In: Hatrman & Kester’s Plant Propagation: Principles and Practices. Prentice Hall, 774-839.
Hossein Ali, M.D., Sobze, J.M., Pham, T.H., Nadeem, M., Liu, C., Galagedara, L., Cheema, M., & Thomas, R. (2020). Carbon Nanoparticles Functionalized with Carboxylic Acid Improved the Germination and Seedling Vigor in Upland Boreal Forest Species. Nanomaterials (Basel), 10(1), 176.
ISTA. (2009). ISTA rules. International Seed Testing Association. Zurich, Switzerland, 60 pp.
Kiani, B. (2004). Forest genetic. Hagh shenas publication. 164 pp.
Kırdar, E., Yücedağ, C., & Balaban, B. (2016). The Effects of Magnetic Field on Germination of Seeds and Growth of Seedlings of Stone Pine. Journal of Forests, 3, 1-6.
Lin, D., & Xing, B. (2007). Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environmental Pollution, 150, 243–250.
Mahajan, T.S., & Pandey, O.P. (2014). Magnetic-time model at off-season germination. International Agrophysics, 28, 57–62.
Martinez, E., Carbonell, M.V., & Florez, M., (2002). Magnetic biostimulation of initial growth stages of wheat (Triticum aestivum L.). Electromagnetic Biology and Medicine, 21(1), 43-53.
Nazari, j., Payamnoor, V., & Kavousi. M.R. (2012). Isolation and identification of seed fungi of birch trees in the northern forests of the country. Journal of Iranian Forests and Rangelands, 10(2), 165-168.
Payamnoor, V., & Kurdalivand. A. (2016). Effect of different treatments of breaking seed dormancy on germination and initial yield of Betula pendula. Plant Researches, 29(2), 1-10.
Payamnoor, V., Ghandehari, V., & Amirian, H. (2017). Improvement of seed germination traits in in Scots pine (Pinus sylvestris), Black pine (Pinus nigra) and Turkish pine (Pinus brutia) by using the polyethylene glycol pre-treatment. Iranian Journal of Forest, 9(3), 373-384.
Payamnoor, V., Hassani Satehi, A., Atashi, S., & Rezaei Asl, A. (2020). The effect of magnetic field and osmopriming on germination and germination of coriander seeds. New Findings in Life Sciences, 7(1), 85-99.
Phirke, P.S., & Umbarkar, S.P. (1998). Influence of magnetic treatment of oilseed on yield and dry matter. PKV Research Journal, 22,130–132.
Rahimi, D., Kartoolinejad, D., Nourmohammadi, K., & Naghdi R. (2018). The Effect of Carbon Nanotubes on drought tolerance of Caucasian Alder (Alnus subcordata C.A.Mey) seeds in germination stage. Iranian Journal of Seed Science and Technology, 7(2), 17-28.
Sarraf, M., Kataria, S., Taimourya, H., Santos O.L., Menegatti, R.D., Jain, M., Ihtisham, M., & Liu, SH. (2020). Magnetic Field (MF) Applications in Plants: An Overview. Plants, 9, 1139. ,
Seyedna, S.V., Pilehvar, B., Abrari Vajari, K., Zarafshar, M., Isavand, H., & Ali Yari, F. (2019). The effect of silica nanoparticles (NSiO2) pretreatments on germination and early growth traits of Sorbus luristanica Bornm species. Journal of Forest Research and Development, 5(3), 435-448.
Sunita, K., Lokesh, B.K.N., & Guruprasad, N. (2017). Pre-treatment of seeds with static magnetic field improves germination and early growth characteristics under salt stress in maize and soybean. Journal of Biocatalysis and Agricultural Biotechnology, 10, 83-90.
Vashisth, A., & Nagarajan, S. (2010). Effect on germination and early growth characteristics in sun flower (Helianthus annuus) seeds exposed to static magnetic Field. Journal plant physiology, 167, 149-156.
Yao, W., & Shen, Y. (2015). Effect of magnetic treatment on seed germination of loblolly pine ( Pinus taeda L.). Scandinavian Journal of Forest Research, 30, 1-11.
Zare, H., (2002). Ecological study of birch habitats in Sangdeh and Lar valley. Master Thesis, Tarbiat Modares University. 140 pp.
Zhang, L., Hong, F., Lu, S., & Liu C. (2005). Effects of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol. Trace Element Reserch, 105, 83- 91.