پاسخ نهال بنه به تلقیح با میکروارگانیسم‌ها در دو سطح رطوبتی در گلخانه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری دانشکدۀ منابع طبیعی دانشگاه تهران، کرج

2 دانشیار دانشکدۀ منابع طبیعی دانشگاه تهران، کرج

3 دانشیار مؤسسۀ تحقیقات جنگل‌ها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران

4 استادیار مؤسسۀ تحقیقات جنگل‌ها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران

10.22034/ijf.2022.319753.1834

چکیده

بنه (Pistacia atlantica var. mutica Rech. f.) یکی از گونه‌های درختی مهم در جنگل‌های ایران محسوب می‌شود که در سال‌های اخیر با چالش‌های زیادی برای احیای طبیعی خود مواجه شده است. در این پژوهش اثر متقابل قارچ Funneliformis mosseae، کود زیستی مایکوروت و باکتری Pseudomonas fluorescens روی نهال بنه در دو تیمار رطوبتی 100 درصد ظرفیت زراعی به‌عنوان تیمار بدون تنش و 50 درصد ظرفیت زراعی به‌عنوان تیمار تنش خشکی بررسی شد. براساس نتایج، کاهش رطوبت خاک موجب کاهش رشد (قطر، وزنِ تر و خشک اندام هوایی و وزنِ تر ریشه) نهال بنه شد. برهمکنش قارچ‌های میکوریزی و باکتری حل‌کنندۀ فسفات روی رشد نهال و همچنین محتوای کلروفیل، کاروتنوئید و پرولین برگ در سطح 5 درصد معنی‌دار بود. بیشترین ارتفاع ساقه به تیمار ترکیبی Funneliformis mosseae و Pseudomonas fluorescens (54/24 سانتی‌متر) در تیمار بدون تنش و کمترین ارتفاع به تیمار شاهد (8/8 سانتی‌متر) در شرایط تنش خشکی تعلق داشت. محتوای پرولین در نهال‌های تلقیح‌شده با قارچ Funneliformis mosseae در حضور باکتری بیشتر از تیمارهای دیگر بود (87/8 میکرومول بر گرم) و این تیمار در کاهش علائم تنش خشکی نسبت به تیمارهای دیگر مؤثرتر واقع شد. در شرایط بدون تنش، حضور باکتری Pseudomonas fluorescens به‌تنهایی موجب بهبود رشد نهال‌ها نشد؛ اما در تعامل با قارچ میکوریزی و همچنین در زمان کاهش رطوبت خاک اثرهای مثبت آن بر رشد نمایان شد. در این پژوهش مشاهده شد که نهال‌های میکوریزی و باکتریایی نسبت به نهال‌های شاهد از رشد بهتری برخوردار بودند و میکروارگانیسم‌ها اثری مشابه آبیاری بر برخی مشخصه‌های رویشی داشتند، اما به‌منظور تأیید نتایج حاضر، آزمایش‌های تکمیلی مشابه در نهالستان و رویشگاه طبیعی روی نهال بنه با اعمال سطوح آبیاری مختلف ضروری به نظر می‌رسد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Response of wild Pistachio seedlings to inoculation with microorganisms under two moisture levels in greenhouse

نویسندگان [English]

  • N Armand 1
  • A Shirvany 2
  • M Matinizadeh 3
  • M Teimouri 4
1 Ph.D. Student of Faculty of Natural Resources, University of Tehran, Karaj, I. R. Iran.
2 Associate Prof., Dept. of Forestry, Faculty of Natural Resources, University of Tehran, Karaj, I. R. Iran
3 Associate Prof., of Research Institute of Forests and Rangelands, Agriculture Research, Education and Extension Organization (AREEO), Tehran, I. R. Iran.
4 Assistant Prof., of Research Institute of Forests and Rangelands, Agriculture Research, Education and Extension Organization (AREEO), Tehran , I. R. Iran.
چکیده [English]

Wild Pistachio (Pistacia atlantica var. mutica Rech. f.) is an important tree species in the forests of Iran that has faced many challenges in its natural restoration. This study investigated the interaction effects of Funneliformis mosseae, MycoRoot biofertilizer, and Pseudomonas fluorescens on Pistacia atlantica seedlings under two water treatments: 100% field capacity as a non-stress treatment and 50% field capacity as a drought stress treatment. Decreased soil moisture reduced the growth (root collar diameter, shoot and root fresh weight, shoot dry weight) of Pistacia atlantica seedlings. The interaction of mycorrhizal fungi and phosphate-solubilizing bacteria on seedling growth, as well as chlorophyll, carotenoid, and leaf proline content, was significant at the 5% level. The highest stem height was observed in the combined treatment of Funneliformis mosseae and Pseudomonas fluorescens (24.54 cm) under non-stress conditions, while the shortest belonged to the control treatment (8.8 cm) under drought stress conditions. Proline content in seedlings inoculated with Funneliformis mosseae in the presence of Pseudomonas fluorescens was higher (8.87 μmol/g) than other treatments, and this treatment was more effective in reducing drought stress symptoms than other treatments. Under non-stress conditions, the presence of Pseudomonas fluorescens alone did not play a significant role in improving seedling growth, but its positive effects on growth appeared when interacting with mycorrhizal fungi and during drought. Although this research observed that mycorrhizal and bacterial seedlings had better growth than control seedlings and that microorganisms had the same effect as irrigation on some growth characteristics, it is necessary to conduct similar additional experiments in nurseries and natural habitats on P. atlantica seedlings using different irrigation levels to confirm these results.

کلیدواژه‌ها [English]

  • Phosphate-solubilizing bacteria
  • drought stress
  • arbuscular mycorrhizal fungi
  • wild pistachio seedling
Aalipour, H., Nikbakht, A., Etemadi, N., Rejali, F., & Soleimani, M. (2020). Biochemical response and interactions between arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria during establishment and stimulating growth of Arizona cypress (Cupressus arizonica G.) under drought stress. Scientia Horticulturae, 261,                                                                                                                                                                                                                  bj  DOI:10.1016/j.scienta.2019.108923
Armada, E., Azcón, R., López-Castillo, O.M., Calvo-Polanco, M., & Ruiz-Lozano, J.M. (2015). Autochthonous arbuscular mycorrhizal fungi and Bacillus thuringiensis from a degraded Mediterranean area can be used to improve physiological traits and performance of a plant of agronomic interest under drought conditions. Plant Physiology and Biochemistry, 90, 64-74. DOI:10.1016/j.plaphy.2015.03.004
Arnon, A.N. (1967). Method of extraction of chlorophyll in the plants. Agronomy Journal, 23, 112-121.
Bates, L.S., Waldren, R.P., & Teare, I.D. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39(1), 205-207.
Behrooz, A., Vahdati, K., Rejali, F., Lotfi, M., Sarikhani, S., & Leslie, C. (2019). Arbuscular mycorrhiza and plant growth-promoting bacteria alleviate drought stress in walnut. HortScience, 54(6), 1087-1092. DOI:10.21273/HORTSCI13961-19.
Begum, N., Wang, L.,   Ahmad, H., Akhtar, K., Roy, R., Ishfaq Khan, M., & Zhao, T. (2021). Co-inoculation of arbuscular mycorrhizal fungi and the plant growth‑promoting rhizobacteria improve growth and photosynthesis in tobacco under drought stress by up‑regulating antioxidant and mneral nutrition metabolism. Microbial Ecology, 83(4), 971-988. DOI:10.1007/s00248-021-01815-7
Berruti, A., Lumini, E., Balestrini, R., & Bianciotto, V. (2016) Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Frontiers in Microbiology, 6, 1559.
Chapman, H.I., & Pratt, P.F. (1961). Methods of Analysis for Soils, Plants and Waters. California: The University of California. DOI:10.3389/fmicb.2015.01559.
Brundrett, M., Bougher, N., Grove, T., & Malajczuk, N. (1996). Working with Mycorrhizas in
Forestry and Agriculture, Monograph 32. Canberra: Australian Center for International Agriculture
Research. DOI:10.13140/2.1.4880.5444
Cavieres, L.A., & Arroyo, M.T.K. (2000). Seed germination response to cold stratification period and thermal regime in Phacelia secunda (Hydrophyllaceae). Plant Ecology, 149, 1–8.
Feizi Kamareh, T., Rahmani, R., Soltanloo, H., & Matinizadeh, M. (2017). Effect of water stress on the growth and antioxidant enzymes activities of pistachio mycorrhiza seedlings (Pistacia vera L.). Iranian Journal of Forest, 8(4), 507-518 (In Persian).
Deveau, A., Palin, B., Delarulle, C., Peter, M., Kohler, A., Pierrat, J.C., Sarniguet, A., Garbaye, J., Martin, F., & Frey-Klett, P. (2007). The mycorrhiza helper Psuedomonas fluoresces BBc6R8 has a specific priming effect on the growth, morphology and gene expression of the ectomycorrhizal fungus Laccaria bicolor S238N. New Phytologist, 1175, 743–755. DOI:10.1111/j.1469-8137.2007.02148.x
Glick, B.R., Cheng, Z., Czarny, J., & Duan, J. (2007). Promotion of plant growth by ACC deaminase-producing soil bacteria. New perspectives and approaches in plant growth-promoting Rhizobacteria research, 329-339. DOI:10.1080/07352680701572966
Hosseini, A., & Pourhashemi, M. (2022). The effect of aspect and seeding position on the seedling emergence and survival of wild pistachio, maple and almond by direct seeding in Ilam forests. Iranian Journal of Forest, 13(4), 395-408 (In Persian).
Jahanpour, F.A., Fatahi, M., & Karamian, R. (2011). Studying the influence of light on surviving of pistachio saplings in Lorestan province. Iranian Journal of Forest, 3(2), 91-98 (In Persian).
Khalvati, M.A., Mozafar, Y.H.A., & Schmidhalter, U. (2005). Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations and gas exchange of barley subjected to drought stress. Plant Biology, 7, 706-712. DOI:10.1055/s-2005-872893
Kaushai, M., & Wani, S.P. (2016). Rhizobacterial-plant interactions: strategies ensuring plant growth promotion under drought and salinity stress. Agriculture, Ecosystems & Environment, 231, 68–78. DOI:10.1016/j.agee.2016.06.031
Meena, M., Divyanshu, K., Kumar S., Prashant Swapnil, b.c., Andleeb Zehra, b., Vaishali Shukla, b., Mukesh Yadav, b., & Upadhyay, R.S. (2019). Regulation of L-proline biosynthesis, signal transduction, transport, accumu-lation and its vital role in plants during variable environmental conditions. Heliyon, 5, e02952. DOI:10.1016/j.heliyon.2019.e02952
Minaxi Saxena, J., Chandra, S., & Nain, L. (2013). Synergistic effect of phosphate solubilizing rhizobacteria and arbuscular mycorrhiza on growth and yield of wheat plants. Journal of Soil Science and Plant Nutrition, 13(2), 511-525. DOI:10.4067/S0718-95162013005000040
Mirzaei, J., Akbarinia, M., Mohamadi Goltapeh, E., Sharifi, M., & Rezaei Danesh, Y. (2011). Effect of arbuscular mycorrhizae fungi on morphological and physiological characteristics of Pistacia khinjuk under drought stress. Iranian Journal of Forest and Poplar Research, 19(2), 291-300 (In Persian).
Mirzaei, J., & Karamshahi, A. (2015). Effects of drought stress on growth and physiological characteristics of Pistacia atlantica seedlings. Journal of Wood & Forest Science and Technology, 22 (1), 31-43 (In Persian).
Maghsodian, O., Mollashahi, M., Moshki, A.R., Ravanbakhsh, H., & Kianian, M.K. (2021). The effect of different soil remediation methods on growth and primary establishment of Pistacia atlantica Desf., Quercus infectoria Oliv., Melia azedarach L. and Cupressus sempervirens L. saplings in Semnan. Iranian Journal of Forest, 13(1), 59-72. DOI:  10.22034/IJF.2021.269743.1764. (In Persian).
Monfared, A.M., Pourmajidian, M.R., Rejali, F., Hojati, H., & Ramak, P. (2021). The impact of biological inputs on drought stress resistance in Celtis caucasica L. seedlings. Environmental Sciences. 19(2), 39-56. (In Persian).
Nadeem, S.M., Ahmad, M., Zahir, Z.A., Javaid, A., & Ashraf, M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances, 32, 429–448. DOI:10.1016/j.biotechadv.2013.12.005
Philips, J.M., & Hayman, J.M. (1970). Improved procedures for clearing roots by staining parasitic and vesicular mycorrhizal fungi for rapid assessment of infection. British Mycologocal Society, 55, 158-160. DOI:10.1016/S0007-1536(70)80110-3
Rahimzadeh, S., & Pirzad, A. (2017). Arbuscular mycorrhizal fungi and Pseudomonas in reduce drought stress damage in flax (Linum usitatissimum L.): a field study. Mycorrhiza, 10, 1–16. DOI:10.1007/s00572-017-0775-y
Sadeghzadeh Hallaj, M.H., Azadfar, D., & Mirzaei Nodoushan, H. (2018). Effect of artificial shading and soil humidity on allocation of some nutrients in the organs of wild pistachio saplings. Iranian Journal of Forest, 10 (1), 43-54 (In Persian).
Sadeghzadeh Hallaj, M.H., Azadfar, D., Mirzaei Nodoushan, H., & Eskandari, S. (2022). Shade moderates the drought stress on saplings of Beneh (Pistacia atlantica Desf. subsp. mutica) in semiarid areas of Iran. Environmental Science and Pollution Research, 29 (3), 1-12. DOI: 10.1007/s11356-022-19635-8
Shayesteh Pahangeh, E., Aliarab, A., Sadati, S.E., Espahbodi, K., & Karimian, Z. (2022). Effect of soil moisture content on survival, growth, and physiological characteristics of wild cherry (Prunus avium L.) seedlings. Iranian Journal of Forest, 13(5), 57-69. DOI:10.22034/IJF.2022.318436.1832
Visen, A., Bohra, M., Singh, P.N., Srivastava, P.C., Kumar, S., Sharma, A.K., & Chakraborty, B. (2017). Two pseudomonad strains facilitate AMF mycorrhization of litchi (Litchi chinensis Sonn.) and improving phosphorus uptake. Rhizosphere, 3, 196–202. DOI:10.1016/j.rhisph.2017.04.006
Wu, Q.S., & Zu, Y.N. (2017). Arbuscular mycorrhizal fungi and tolerance of drought stress in plants. In Q.S. Wu (Ed.) Arbuscular Mycorrhizas and Stress Tolerance of Plants (pp. 25- 41). Singapore: Springer. DOI:10.1007/978-981-10-4115-0_2