برآورد مؤلفه‌های اکو هیدرولوژی تاج و تنۀ درختان سوزنی‌برگ و پهن‌برگ در جنگل‌های زاگرس (مطالعۀ موردی: پارک جنگلی چغاسبز، ایلام)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری علوم جنگل، دانشکدۀ کشاورزی، دانشگاه ایلام

2 دانشیار گروه علوم جنگل، دانشکدۀ کشاورزی، دانشگاه ایلام

3 استادیار گروه جنگلداری، دانشکدۀ کشاورزی و منابع طبیعی اهر، دانشگاه تبریز

4 استاد گروه جنگلداری و اقتصاد جنگل، دانشکدۀ منابع طبیعی، دانشگاه تهران

چکیده

مقدمه: برآورد مشخصه­های اکوهیدرولوژی تاج‌پوشش و تنۀ درختان، یکی از موضوعات پژوهشی در زمینۀ اکوهیدرولوژی است که در انتخاب گونۀ مناسب برای پروژه­های جنگلکاری، فاصلۀ کاشت درختان و تیمارهای جنگل­شناسی کمک می‌کند. هدف این پژوهش، برآورد مشخصه­های اکوهیدرولوژی تاج ­بارش و ساقاب درختان شاخه­زاد توده­های طبیعی بلوط ایرانی (Quercus brantii Lindl.) و جنگلکاری‌شدۀ کاج تهران (Pinus eldarica Medw.) و سرو نقره­ای (Cupressus arizonica Greene.) در جنگل­های زاگرس (پارک جنگلی چغاسبز، شهرستان ایلام) است.
مواد و روش­ها: مشخصه­های اکوهیدرولوژی تاج‌پوشش شامل نقطۀ اشباع آب تاج‌پوشش (g)، ظرفیت نگهداری آب تاج‌پوشش (S)، ضریب تاج‌بارش مستقیم (p) و نسبت تبخیر به شدت باران در زمان بارندگی ( ) نیز مشخصات اکوهیدرولوژی تنه شامل ظرفیت نگهداری آب تنۀ (St)، ضریب ساقاب (pt)، نقطۀ اشباع آب تنه (Pʹʹg) و همچنین ضریب قیف‌شکل تاج (F) گونه­های تحت بررسی براساس روش­های استاندارد تعیین شد.
یافته­ها: نتایج به‌دست‌آمده به‌ترتیب در توده­های بلوط ­ایرانی، کاج تهران و سرو نقره­ای برای مقادیر نقطۀ برآوردی اشباع آب تاج‌پوشش 28/1، 02/2 و 83/1 میلی‌متر؛ ظرفیت نگهداری آب تاج‌پوشش 2/1، 8/1 و 5/1 میلی‌متر؛ نسبت تبخیر به شدت باران در زمان بارندگی 13/0، 46/0 و 36/0؛ ضریب تاج‌بارش مستقیم 14/0، 28/0 و 22/0؛ ظرفیت نگهداری آب تنه 069/0، 112/0 و 14/0 میلی‌متر؛ ضریب ساقاب 022/0، 069/0 و 061/0؛ نقطۀ اشباع آب تنه 14/3، 62/1 و 3/2 میلی‌متر؛ و ضریب قیف‌شکل برابر 21/7، 22/10 و 45/9 بودند. نتایج بیانگر رابطۀ خطی مثبت بین مقدار ساقاب و مقدار باران بود.
نتیجه­گیری: به‌طور کلی با افزایش مقدار باران، مقدار ضریب قیف‌شکل تاج‌پوشش افزایش نشان داد. در بین سه توده، بلوط ایرانی کمترین و کاج تهران بیشترین میانگین ضریب قیف‌شکل تاج را داشت. با شناخت مؤلفه­های اکوهیدرولوژی تاج‌پوشش و تنۀ گونه­های مختلف درختی مختلف می­توان درک بهتری از چرخۀ آب در منطقه داشت. همچنین این شناخت موجب می­شود که با اطمینان بیشتری دربارۀ فاصله کاشت و تراکم درختان و اعمال تیمارهای جنگل‌شناسی در راستای بهبود آب ورودی به خاک از طریق باران در این اکوسیستم جنگلی اظهار نظر کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of canopy and trunk ecohydrological parameters of coniferous and broadleaf trees in Zagros forests (Case study: Choqasabz Forest Park, Ilam)

نویسندگان [English]

  • E Allahinezhad 1
  • M Heydari 2
  • J Mirzaei 2
  • O Fathizadeh 3
  • P Attarod 4
1 Ph.D. Student, Faculty of Aghriculture, University of Ilam, I. R. Iran
2 Associate Prof., Faculty of Agricultural, University of Ilam, I. R. Iran
3 Assistant Prof., Dept. of Forestry, Faculty of Agriculture and Natural Resources, Ahar, University of Tabriz, I. R. Iran
4 Prof., Dept. of Forestry and Forest Economics, Faculty of Natural Resources, University of Tehran, I. R. Iran
چکیده [English]

Introduction: Estimating the ecohydrological characteristics of tree crown and trunk of trees is one of the research topics in the field of forest ecohydrology that helps managers in choosing the suitable species for plantation projects, tree planting intervals and silvicultural treatments. This study aimed to estimate the ecohydrological characteristics of throughfall and stemflow in natural coppice stands of Persian oak (Quercus brantii Lindl.) and afforestation of Pinus eldarica Medw., and Cupressus arizonica Greene in Zagros forests Chaghasbez Forest Park, Ilam County).
Material and Methods: The ecohydrological parameters of the canopy include the canopy saturation point (Pʹg), canopy water storage capacity (S), free throughfall coefficient (p) and theratio of mean evaporation rate from the wet canopy to the mean rainfall intensity (E̅/R̅) as well as the ecohydrology characteristics of trunk such as the trunk storage capacity (St), stemflow partitioning coefficient (Pt), trunk saturation point (Pʹʹg) and funneling coefficient (F) of the studied species based on standard methods.
Findings: The following results obtained for the canopy saturation point; 1.28, 2.02, and 1.83 mm, canopy water storage capacity; 1.2, 1.8 and 1.5 mm, E̅/R̅; 0.13, 0.46 and 0.36, free throughfall coefficient; 0.14, 0.28 and 0.22, trunk storage capacity: 0.069, 0.112 and 0.14 mm, stemflow partitioning coefficient; 0.022, 0.069 and 0.061, trunk saturation point; 3.14, 1.62 and 2.3 mm and funneling coefficient was 7.21, 10.22 and 9.45 in Quercus brantii, Pinus eldarica and Cupressus arizonica stands, respectively. The results showed a positive linear relationship between stemflow and the gross rainfall.
Conclusion: In general, with the increase in the amount of precipitation, the value of the funneling coefficient enhanced. Among the three studied stands, oak stand had the lowest and pine had the highest mean funneling coefficient. By knowing the ecohydrological components of the canopy and trunk of different trees, one can have a better understanding of the water cycle in the region. In addition, this knowledge makes it possible to discuss with more confidence regarding the distance of planting and density of trees and the application of silvicultural measures in order to improve the water entering the soil through rainfall in this forest ecosystem.

کلیدواژه‌ها [English]

  • Canopy
  • Ecohydrology
  • Stemflow
  • Trunk
  • water storage
 
Abbasian, P., Attarod, P., Sadeghi, S.M.M., Nazarirad, M.A., & Hojati, S.M. (2014). Direct through fall coefficient and canopy storage capacity by a Picea abies plantation in Kelardasht, North of Iran. Forest Sustainable Development, 1(2), 103-118. (In Persian)
Abbasian, P., Attarod, P., Sadeghi, S.M.M., Van Stan, J.T., & Hojjati, S.M. (2015). Throughfall nutrients in a degraded indigenous Fagus orientalis forest and a Picea abies plantation in the of North of Iran. Forest Systems, 24(3), 1-10. https://doi.org/10.5424/fs/2015243-06764
Didon-Lescot, J.F. (1998). The Importance of Throughfall in Evaluating Hydrological and Biogeochemical Fluxes: Example of a Catchment (Mont-Lozere, France). In Proceedings of the International Conference on Catchment Hydrological and Biochemical Processes in Changing Environment (pp. 20-23).
Dunkerley, D. (2000). Measuring interception loss and canopy storage in dryland vegetation: a brief review and evaluation of available research strategies. Hydrological Processes, 14(4), 669-678. https://doi.org/10.1002/(SICI)1099-1085(200003)14:4<669::AID-HYP965>3.0.CO;2-I.
Fathizadeh, O., Attarod P., & Sohrabi, H. (2014). The optimum samples size to estimate throughfall for individual Brant`s oaks (Quercus brantii) in Zagros forests. Iranian Journal of Forest and Poplar Research, 22(4), 574-584.
Fathizadeh, O., Hosseini, S.M., Keim, R.F., & Boloorani, A.D. (2018). A seasonal evaluation of the reformulated Gash interception model for semi-arid deciduous oak forest stands. Forest Ecology and Management, 409, 601-613. https://doi.org/10.1016/j.foreco.2017.11.058.
Ford, E., & Deans, J. (1978). The effects of canopy structure on stemflow, throughfall and interception loss in a young Sitka spruce plantation. Journal of Applied Ecology, 15, 905-917.
Friesen, J., Lundquist, J., & Van Stan, J.T. (2015). Evolution of forest precipitation water storage measurement methods. Hydrological Processes, 29(11), 2504-2520. https://doi.org/10.1002/hyp.10376.
Gash, J.H.C. (1979). An analytical model of rainfall interception by forests. Quarterly Journal of the Royal Meteorological Society, 105(443), 43-55.
Gash, J.H.C., & Morton, A. J. (1978). An application of the Rutter model to the estimation of the interception loss from the Thetford forest. Journal of Hydrology, 38(1-2), 49-58.
Gash, J.H.C., Lloyd, C.R., & Lachaud, G. (1995). Estimating sparse forest rainfall interception with an analytical model. Journal of Hydrology, 170(1-4), 79-86. https://doi.org/10.1016/0022-1694(95)02697-N.
Gash, J.H.C., Wright, I.R., & Lloyd, C.R. (1980). Comparative estimates of interception loss from three coniferous forests in Great Britain. Journal of Hydrology, 48(1-2), 89-105. https://doi.org/10.1016/0022-1694(80)90068-2.
Gomez, J.A., Vanderlinden, K., Giraldez, J.V., & Fereres, E. (2002). Rainfall concentration under olive trees. Agricultural Water Management, 55, 53-70. https://doi.org/10.1016/S0378-3774(01)00181-0.
Herwitz, S.R. (1986). Infiltration-excess caused by stemflow in a cyclone-prone tropical rainforest. Earth Surface Processes and Landforms, 11(4), 401-412. https://doi.org/10.1002/esp.3290110406.
Huber, A., & Iroumé A. (2001). Variability of annual rainfall partitioning for different sites and forest covers in Chile. Journal of Hydrology, 248(1-4), 78-92. https://doi.org/10.1016/S0022-1694(01)00394-8.
Jazirei, M. H & Ebrahimi Rastaghi, M. (2003). Silviculture in zagros, Tehran University Publications, p. 560. (In Persian)
Johnson, M.S., & Lehmann, J. (2006). Doublefunneling of trees: Stemflow and rootinduced preferential flow. Ecoscience, 13(3), 324-333. https://doi.org/10.2980/i1195-6860-13-3-324.1.
Levia, D.F., & Frost, E.E. (2003). A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems. Journal of Hydrology, 274(1), 1-29. https://doi.org/10.1016/S0022-1694(02)00399-2.
Licata, J.A., Pypker, T.G., Weigandt, M., Unsworth, M.H., Gyenge, J.E., Fernández, M.E., Schichter, M., & Bond, B.J. (2011). Decreased rainfall interception balances increased transpiration in exotic ponderosa pine plantations compared with native cypress stands in Patagonia, Argentina. Ecohydrology, 4, 83-93. https://doi.org/10.1002/eco.125.
Link, T.E., Unsworth M., & Marks, D. (2004). The dynamics of rainfall interception by a seasonal temperate rainforest. Agricultural and Forest Meteorology, 124, 171-191. https://doi.org/10.1016/j.agrformet.2004.01.010.
Liu, Z., Wang, Y., Tian, A., Liu, Y., Webb, A.A., Wang, Y., & Xu, L. (2018). Characteristics of canopy interception and its simulation with a revised Gash model for a larch plantation in the Liupan Mountains, China. Journal of forestry research, 29, 187-198.  https://doi.org/10.1007/s11676-017-0407-6.
Lloyd, C.R., & Marques, F. (1988). Spatial variability of throughfall and stemflow measurements in Amazonian rainforest. Agricultural and Forest Meteorology, 42, 63-73. https://doi.org/10.1016/0168-1923(88)90067-6.
Ma, C., Li, X., Luo, Y., Shao, M., & Jia, X. (2019). The modelling of rainfall interception in growing and dormant seasons for a pine plantation and a black locust plantation in semi-arid Northwest China. Journal of Hydrology, 577, 123849. https://doi.org/10.1016/j.jhydrol.2019.06.021.
Ma, C., Yao, Q., Meng, H., Zhou, B., Wang, Q., & Luo, Y. (2022). Rainfall Partitioning by Evergreen and Deciduous Broad-Leaved Xerophytic Tree Species: Influence of Rainfall, Canopy Characteristics, and Meteorology. Water, 14(22), 3723. https://doi.org/10.3390/w14223723.
Mckee, A.J. (2010). The quantitative importance of stemflow: an evaluation of past research and results from a study in lodgepole pine (Pinus contorta Var. latifolia) stands in southern British Columbia. Master's Thesis. University of British Columbia. Columbia, Canada, 113 p.
McKee, A.J., & Carlyle-Moses, D.E. (2010). Stemflow: A potentially important point source of water for growth. Linking Innovations and Networking Knowledge, 11(2), 11-12.
Meng, L.C., Cui, Z., Huang, Z., Lucas‐Borja, M.E., Dunkerley, D., & Wu, G.L. (2022). Thinning effects on forest production and rainfall redistribution: Reduced soil water deficit and improved sustainability of semiarid plantation forestlands. Land Degradation & Development, 33(16), 3163-3173. https://doi.org/10.1002/ldr.4379.
Moradizadeh, H., Heydari, M., Omidipour, R., Mezbani, A., & Prévosto, B. (2020). Ecological effects of fire severity and time since fire on the diversity partitioning, composition and niche apportionment models of post-fire understory vegetation in semi-arid oak forests of Western Iran. Ecological Engineering, 143, 105694.  https://doi.org/10.1016/j.ecoleng.2019.105694.
Murakami, S. (2009). Abrupt changes in annual stemflow with growth in a young stand of Japanese cypress. Hydrological Research Letters, 3, 32-35. https://doi.org/10.3178/hrl.3.32.
Muzylo, A., Llorens, P., Valente, F., Keizer, J.J., Domingo, F., & Gash, J.H.C. (2009). A review of rainfall interception modelling. Journal of hydrology, 370(1-4), 191-206. https://doi.org/10.1016/j.jhydrol.2009.02.058.
Nazari, M., Sadeghi, S.M.M., Van Stan II, J.T., & Chaichi, M.R. (2020). Rainfall interception and redistribution by maize farmland in central Iran. Journal of Hydrology: Regional Studies, 27, 100656. https://doi.org/10.1016/j.ejrh.2019.100656.
Nezamdoost, H., Sefidi, K., Rasoulzadeh, A., & Sadeghi, S.M.M. (2018). Quantifying throughfall, stemflow, and rainfall interception in a Fagus orientalis forest and a Picea abies plantation in Siahkal, Gilan. Iranian Journal of Forest, 9(3), 385-397. (In Persian)
Panahandeh, T., Attarod, P., Namiranian, M., Bayramzadeh, V., & Sadeghi, S.M.M. (2022). Estimation of canopy ecohydrological parameters of oriental beech and chestnut-leaved oak stands in Hyrcanian vegetation region. Iranian Journal of Forest, 14(1), 27-36. (In Persian)
Pypker, T.G., Bond, B.J., Link, T.E., Marks, D., & Unsworth, M.H. (2005). The importance of canopy structure in controlling the interception loss of rainfall: Examples from a young and an old-growth Douglas-fir forest. Agricultural and forest Meteorology, 130(1-2), 113-129. https://doi.org/10.1016/j.agrformet.2005.03.003.
Rad, J. E., Heidari, M., Mahdavi, A., & Zeinivandzadeh, M. (2011). Impact of recreational activities on vegetation and soil in forest park (case study: Choghasabz Forest Park-Ilam). Iranian journal of forest, 3(1), 71-80. (In Persian)
Reid, L.M., & Lewis, J. (2009). Rates, timing, and mechanisms of rainfall interception loss in a coastal redwood forest. Journal of Hydrology, 375(3-4), 459-470. https://doi.org/10.1016/j.jhydrol.2009.06.048.
Roy, M.B., Roy, P.K., Halder, S., Banerjee, G., & Mazumdar, A. (2021). Assessment of Stream Flow Impact on Physicochemical Properties of Water and Soil in Forest Hydrology Through Statistical Approach. In India: Climate Change Impacts, Mitigation and Adaptation in Developing Countries (pp. 207-225). Cham: Springer International Publishing, (pp. 207-225).
Sadeghi, S.M.M., & Attarod, P. (2017). Estimation of ecohydrological parameters of trunk and canopy of a Pinus eldarica plantation. Forest Research and Development, 3(3), 207-220. (In Persian)
Sadeghi, S.M.M., Attarod, P., Pypker, T.G., & Dunkerley, D. (2014). Is canopy interception increased in semiarid tree plantations? Evidence from a field investigation in Tehran, Iran. Turkish Journal of Agriculture and Forestry, 38(6), 792-806. https://doi.org/10.3906/tar-1312-53.
Sadeghi, S.MM., Attarod, P., Van Stan, J.T., Pypker, T.G., & Dunkerley, D. (2015). Efficiency of the reformulated Gash's interception model in semiarid afforestations. Agricultural and Forest Meteorology, 201, 76-85. https://doi.org/10.1016/j.agrformet.2014.10.006.
Sefidi, K., Sadeghi, S.M.M., Esmaielzadeh, O., Rasoulzadeh, A., & Nezamdoost, H. (2020). Estimation of canopy and trunk ecohydrological parameters of Fagus orientalis and Picea abies stands (Siahkal, Gilan province). Forest Research and Development, 6(2), 265-276. (In Persian)
Viville, D., Biron, P., Granier, A., Dambrine, E., & Probst, A. (1993). Interception in a mountainous declining spruce stand in the Strengbach catchment (Vosges, France). Journal of Hydrology, 144(1-4), 273-282. https://doi.org/10.1016/0022-1694(93)90175-9.
Yildiz, O., Altundağ, E., Çetin, B., Teoman Güner, Ş., Sarginci, M., & Toprak, B. (2018). Experimental arid land afforestation in Central Anatolia, Turkey. Environmental monitoring and assessment, 190, 1-17.  https://doi.org/ 10.1007/s10661-018-6724-1.
Ziaye Shendershami, S., Mianabadi, A., & Sadeghi, S.M.M. (2021). Performance of Revised Gash Model for Estimating Rainfall Interception in a Robinia pseudoacacia plantation during the leafed and leafless periods. Journal of Environmental Science and Technology, 23(10), 61-71.